

EVALUATING THE QUALITY OF MULTI-CAMERA VIDEO
CAPTURE AND VIEW-POINT INTERPOLATION FOR 6DOF

AR/VR APPLICATIONS

Chris Varekamp

Philips Group Innovation, Research, The Netherlands

ABSTRACT

Producing live 6DoF video requires video capture with multiple cameras,
real-time depth estimation, compression, streaming and playback. All of
these components are under development and a ready-made solution is
hard to find. To make the right choices during development there is a clear
need to be able to predict in advance the effect that system parameters (e.g.
baseline) and depth estimation algorithms have on image quality.

In this paper, I present a quality evaluation approach that uses ray-traced
images of artificial scenes to simulate the acquisition for a given camera
capture configuration. The images are passed to real-time depth estimation
and view-synthesis software. Views are then synthesized for a pre-set
viewing zone and the resulting images are compared with the ray-traced
images. Modelling errors are isolated from depth estimation errors by
comparing both the images synthesized from ground truth depth and
images synthesized from estimated depth with the ray-traced images.

INTRODUCTION

With an increasing number of display devices supporting positional tracking and 3D
interaction, the relevance of multi-camera capturing and 6DoF processing increases.
Applications include live concerts, live sports and telepresence. The freedom of selecting
one’s own viewpoint enriches these applications by increasing the feeling of presence over
regular video. Further into the future more immersive scenarios can be conceived where an
observer may navigate and interact with a live captured scene. For broadcast applications
we need real-time depth estimation on the production side and real-time view synthesis at
the client device. Both depth estimation and view synthesis introduce errors and these errors
depend on the implementation details of algorithms. Furthermore, the optimal camera
configuration depends on the intended application and the 3D structure of the scene being
captured. In the next sections, I introduce a ray-tracing approach to quality evaluation inside
a target viewing zone. The approach is evaluated using our real-time multi-camera setup for
live broadcast.

SIMULATION APPROACH

Blender [1] is a graphics rendering engine that is commonly used for film creation and game
development. The Python interface for version 2.79 was used to create ray traced images for
cameras located in a regular grid of 15×15 anchors with a spacing of 3cm. The resulting
viewing zone allows an observer to move his/her head back-to-front and left-to-right (see
Figure 1).

Figure 1 – Viewing zone for a standing person allowing limited head motion parallax. The
quality of view synthesis from a given set of reference camera views (green circles) is
evaluated on a uniform grid (red circles).

Python was used to automate the Blender raytracing of the 15×15 images. A sample spacing
of 3cm was used in both x- and y-direction. One of the key parameters to pre-investigate for
the design of a capture rig is the camera spacing (baseline). Using ray traced images allows
us to find an optimal baseline for a given minimum quality level within the intended viewing
zone. As representative scenes we investigated the capture of a person scene (Human) that
we constructed using the MakeHuman software in [2], and a car scene (Car) for which we
used one of the Blender demo files [3].

To compare system parameters with a simple measure we use Peak signal-to-noise ratio:

𝑃𝑆𝑁𝑅 ≡ 10 ∙ log10 (
2552

𝑀𝑆𝐸
),

where 𝑀𝑆𝐸 is the mean squared error over RGB colour channels. While 𝑃𝑆𝑁𝑅 may not be
the best metric to evaluate absolute video quality, it is especially useful for comparing
baseline within a single dataset. Next to using PSNR we visually compare synthesised
images with the ground truth ray traced images.

field of view

HFOV

VFOV

3D viewing zone

sampling grid on xy-plane

REAL-TIME CAPTURE, DEPTH ESTIMATION, STREAMING AND PLAYBACK

Video capture, depth estimation, multi-view packing and compression

Figure 2(a) gives a system overview showing the algorithm blocks from capture to rendering
on the client device. For the live broadcast case, depth estimation and multi-view registration
are very similar to what we described for a static scene in reference [4]. Again, we used
depth estimation and error classification as described in [5] and [6] but now implemented on
a GPU to achieve real-time performance at 30Hz. See [7] for a review of real-time depth
estimation algorithms. A temporal bilateral filter makes sure that the depth maps vary
smoothly as a function of time such that depth errors are at least temporally not disturbing.

Figure 2 – (a) Components of our real-time system; (b) Photograph of our current system
for live capture and conversion.

Our current system displayed in figure 2b consists of a 6-camera rig, a barebone computer
(Magnus ZBOX-EN1080K) and a 4K display for monitoring estimated depth maps. The
system processes 6-camera feeds of 640×1080 resolution, calculates 6 depth maps, packs
6 images and 6 depth maps together in a single 4K video frame and encodes this, all in real-
time at 30 fps. Such a system thus forms a scalable low-cost (consumer hardware) solution
for live-streaming: Depending on the target resolution, two, four or six cameras may be
attached to a single PC and the output of each PC can stream to a common server. Frame
synchronization of the multiple videos is dealt with at the capture side. The 4K output of
each PC is encoded using the encoder chip that is present on the graphics card. The system
can output normal H.264 or HEVC video or can directly produce HLS/MPEG-DASH video
fragments to allow adaptive streaming.

Stream selection, view synthesis, view blending and display

At the client side, views are received as packed video and decoded using the platform
specific hardware decoder. After decoding follows unpacking where the needed reference

N views

Capture Depth
Estimation

Multi-view
Registration

Video
Encoding

Calibration

Video
Decoding

Stream
Selection

View
Synthesis

L,Reye positions
viewing direction

Multi-view
Packing

Camera
Selection

Stereo
Rectification

Server

6 IDS cameras
Barebone with

CPU/GPU
4K display with
6x image/depth

views and depth maps are extracted from the packed frame. The depth maps are converted
to a mesh using a vertex shader.

Stream selection (Figure 3) runs at the client device. We assume that the client has model
matrices 𝑀𝑖 of the reference views 𝑖 available as metadata. Stream selection selects the two
nearest reference viewpoints using the 4×4 view matrices 𝑉left and 𝑉right for each eye. The

nearest viewpoint is calculated using:

𝑖nearest = argmin

𝑖
(|𝑀𝑖𝐩 − 𝑉𝐩|),

where 𝑀𝑖 is the model matrix for view 𝑖, homogeneous coordinate 𝐩 = (0,0,0,1)t and 𝑉 is the
view matrix of either the left or the right eye.

Figure 3 – Selection of the two nearest reference viewpoints for each eye.

At initialization, we create a fixed size regular triangular mesh. Via sampling of the depth
map, the vertex shader converts each vertex of the mesh directly to a clip-space
homogenous output position:

𝐩 = 𝑃𝑉eye𝑀𝑖𝑄𝑖 [

𝑢
𝑣

𝐷𝑖(𝑢, 𝑣)
1

],

where 𝐷𝑖(𝑢, 𝑣) is the disparity derived from the depth map at input texture coordinates (𝑢, 𝑣),
𝑄𝑖 is the disparity to depth matrix and 𝑃𝑉eye𝑀𝑖 is the product of model, view and projection

matrix for a given eye. For the experiments in this paper we use a simple fragment shader,
but it can in principle be used to do more advanced occlusion handling and/or blending for
improved image quality. Both the nearest and the second nearest reference view are
blended together to predict the final image. This allows in principle for a scalable solution to
6DoF video where only a limited sub-set of potentially very many views are streamed to the
user while he/she is moving. In this paper, blending only depends on the proximity of
reference views:

𝐈eye =
|𝒙2|

|𝒙1|+|𝒙2|
𝐈1 +

|𝒙1|

|𝒙1|+|𝒙2|
𝐈2,

where 𝒙1 and 𝒙2 are the distances along the x-axis to the nearest and second nearest
reference views. This simple blending equation represents a trade-off between perceptually

smooth transitions between reference views and slightly less accuracy of view synthesis in
occlusion regions.

RESULTS AND DISCUSSION

Quantitative evaluation

Figures 4 and 5 show PSNR variations in the viewing zone for three different camera
baselines (12cm, 6cm and 3cm). The top row of each figure was produced with ground truth
depth maps while the bottom row was produced with estimated depth maps. Ground truth
depth and estimated depth result in a similar pattern: the smaller the baseline the higher the
PSNR in the viewing zone. Table 1 summarizes results for the two scenes where the
minimum PSNR over a 24×24cm region is reported. It can be seen that PSNR values are
systematically lower for the Car scene when compared to the Human scene. This is due to
the transparent objects (windows) in the car for which the model of having a single depth
value per pixel is clearly too simple. For the Car scene, the depth estimator can fail for shiny
and/or transparent object parts.

Figure 4 – PSNR [dB] for Human inside the viewing zone on a scale from 30-50 dB for
varying camera baseline using ground truth disparity (top row) compared with estimated
disparity (bottom row). Green circles are reference cameras.

 = 0 1 m = 0 0 m = 0 0 m

Figure 5 – PSNR [dB] for Car inside the viewing zone on a scale from 30-50 dB for varying
camera spacing using ground truth disparity (top row) compared with estimated disparity
(bottom row). Green circles are reference cameras.

 Human Car

 = 0 1 m = 0 0 m = 0 0 m = 0 1 m = 0 0 m = 0 0 m

Ground Truth Depth 39.5 42.7 43.7 38.4 39.0 38.9

Estimated Depth 37.0 41.6 41.9 37.2 36.2 31.7

Table 1 - Minimum PSNR [dB] over central 24×24cm region of the viewing zone

Qualitative evaluation

The simulation approach allows direct comparison of ground truth depth with estimated
depth. Figure 6 shows such a comparison for Human. It can be seen that a smaller baseline
results in fewer disparity estimation errors. This is understandable since synthesis occurs
from reference views at smaller spatial distance and occlusion/illumination differences are
smaller for smaller baselines.

 = 0 1 m = 0 0 m = 0 0 m

Since ray-traced ground truth images are available, a visual comparison can be done
between ray-traced images, synthesized images using ground truth and synthesized images
using depth estimation. Figure 7 shows such a comparison for the Car scene. There are
hardly any visible differences between ray-traced images and synthesized images when
using ground-truth depth. When using estimated depth, some image blurring results.

Figure 6 – Ground truth versus estimated disparity for different baselines. To produce the
grey scale image, a scaling was applied to compensate for baseline difference. Errors at a
larger baseline (red circle) disappear at a smaller baseline (green circle).

Figure 7 – Visual comparison between ray-traced, synthesized using ground truth depth and
synthesized using estimated depth (= 0 0 m) for images for different locations in the
viewing zone.

 = 0 1 m = 0 0 m = 0 0 mGround truth

Estimated

Ray-traced True depth Estimated depth Ray-traced True depth Estimated depth

Ray-traced True depth Estimated depth

CONCLUSIONS AND FUTURE WORK

We have demonstrated a simulation approach based on ray-traced images to predict the
quality of a 6DoF video broadcast system and evaluated the approach using our current
real-time six-camera multi-view camera system. Errors occur due to camera spacing, real-
time depth estimation and view synthesis.

We have isolated modelling errors from estimation errors, which is useful when trying to
improve depth estimation and view synthesis. The approach may be used for the design of
more complex (360 degree) capture rigs or potentially very large camera arrays.

Both depth estimation errors and view synthesis errors can be reduced by using a reduced
camera spacing. However this results in more video streams and hence a larger bandwidth.
In future, we will therefore include the dynamics of view switching and adaptive streaming
with realistic latencies into our simulation approach.

REFERENCES

1. Blender: https://www.blender.org/.

2. MakeHuman: http://www.makehumancommunity.org/.

3. Blender demo file: Car Viewport (Mike Pan, CC0 licence):

https://www.blender.org/download/demo-files/

4. C. Varekamp, B. Kroon, B. Sonneveldt, A. Willems. Depth based room-scale six degrees
of freedom virtual reality capture and processing. IBC 2018.

5. G. de Haan, P.W.A.C. Biezen, H. Huijgen, O.A. Ojo. True-motion estimation with 3-D
recursive search block matching. IEEE Transactions on Circuits and Systems for Video
Technology, vol. 3, no. 5, October 1993.

6. C. Varekamp, K. Hinnen, W. Simons. Detection and correction of disparity estimation
errors via supervised learning. International Conference on 3D Imaging, 3-5 Dec. 2013.

7. L. Vosters, C. Varekamp, G. de Haan. Overview of efficient high-quality state-of-the-art
depth enhancement methods by thorough design space exploration. Journal of Real-Time
Image Processing, pp. 1–21, 2015.

https://www.blender.org/
http://www.makehumancommunity.org/
https://www.blender.org/download/demo-files/

