

Extended Reality Multipoint Control Unit – XR-MCU

Enabling Multi-user Holoconferencing via Distributed Processing

G. Cernigliaro, A. Ansari, M. Martos, M. Montagud, S. Fernandez

{gianluca.cernigliaro, amir.ansari, marc.martos, mario.montagud, sergi.fernandez}

@i2cat.net

i2CAT Foundation (Spain)

ABSTRACT

Connecting remote people in a hyper-realistic and immersive manner is a major challenge
and requirement, recently magnified by the lockdown and the forced social distancing
measures the population has had to deal with. This paper presents a key technological
component to efficiently enable multi-user holoconferencing systems, where remote
participants can virtually meet represented as 3D volumetric Point Clouds. The contribution
resides in bringing the traditional MCU concept broadly used in 2D videoconferencing
services to emerging 3D holoconferencing scenarios, with the development of a virtualized
cloud-based Extended Reality Multipoint Control Unit (XR-MCU). The XR-MCU aims at
reducing the requirements in terms of computational resources and bandwidth consumption
at the client side, thanks to the development of a set of novel features, like: fusion of
volumetric videos from different users, adjustment of Level of Detail (LoD), and removal of
non-visible data. The results from an experimental test confirm the benefits of the XR-MCU
when compared to a baseline scenario without its usage. These promising results, together
with further planned optimizations, open to door to new technological solutions to enable
scalable and adaptive 3D holoconferencing services using lightweight devices. The
contribution of this paper can therefore provide relevant societal and economic benefits to
our society, by enabling hyper-realistic virtual meetings using inexpensive hardware, while
overcoming spatial barriers and travel requirements, and minimizing the environmental
burden.

1. INTRODUCTION

Distributed media services, like videoconferencing, have become fundamental for connecting
remote people in real-time. Platforms like Skype and Google Hangouts are widely used in a
variety of private and professional settings, exchanging large volumes of time-sensitive data
with demanding needs in terms of processing and scalability. Due to the common limited
computational resources at the client side, Multi-point Control Units (MCUs) [1] rapidly
became core components in video communication systems, managing sessions and
communications, and performing additional advanced features like layout and quality
adaptability. The demand for such kind of services, and thus also for scalable solutions, has
been magnified with the recent outbreak of the Covid-19 pandemic, with an estimation of
around one-third of the world’s population experiencing some kind of lockdown or quarantine
[2].

In this research field, significant efforts are additionally devoted to providing higher feeling of
realism and immersion in video-oriented services. Video technologies are indeed witnessing
an evolution in terms of relevant aspects, like 3D video paradigms, and improved quality and
representation formats. Particular attention is being given to the specification of novel

solutions to capture, compress, transmit and represent 3D volumetric video, especially for
natural content and real-time scenarios. As proof of evidence, the very first Point Clouds
compression standardization process has been initiated within Moving Pictures Experts
Group (MPEG) [3]. All the aforementioned advances have jointly opened the door to the
holoportation concept, enabling a real-time rendering of volumetric videos captured from
remote locations in a shared space, either virtual or real. Figure 1 shows one of the pioneering
holoportation systems developed by Microsoft [4].

Figure 1: Microsoft Real-time holoportation system [5].

However, the quality of 3D natural video for volumetric holoconferencing is not yet
comparable to the one of 2D video in traditional conferencing systems. The technology behind
holoportation systems is still at an early stage, and given the high volumes of data involved
in the representation of Point Clouds, off-the-shelf clients are not yet ready for their real-time
processing. These issues have been raised in the Network Based Media Processing (NBMP)
task force within MPEG [5], by suggesting to move the overloading parts of the processing of
immersive content services to the cloud.

This paper presents a new technological enabler to address key challenges in real-time multi-
user 3D holoconferencing systems. In particular, the widespread MCU concept for multi-user
2D videoconferencing is brought to 3D volumetric scenarios with end-users represented as
Point Clouds (PC). The presented XR-MCU is a virtualized cloud-based component
applicable to any distributed multi-user Virtual/Augmented/Mixed/eXtended Reality
(VR/AR/MR/XR) service, which aims at alleviating the demands at the client side, by
minimizing the computational resources and bandwidth consumption. A set of innovative and
coordinated features have been proposed and implemented to achieve this:

• Multiple Volumetric Video de/coding, compatible with most common Point Cloud
compression strategies.

• Reception and delivery of multiple MPEG Dynamic Adaptive Streaming over HTTP
(DASH) streams.

• Level of Detail (LOD) adjustment: the incoming Point Cloud representations can be
down-sampled, providing the most appropriate resolution based on the users’ relative
position, activity and underlying context.

• Removal of non-visible volumetric video: the non-visible parts of the volumetric
environment can be removed from the specific stream delivered to each user.

• Fusion of volumetric videos: the incoming volumetric videos are decoded,
appropriately processed and fused as a single volumetric video for the scene, which
can be delivered as a single (personalized) stream to the client devices.

This set of features allows us to provide an optimized stream for each involved user,
depending on their position, viewpoint and available resources, thus alleviating the
requirements at the client side, and ensuring a smooth experience.

The XR-MCU and its features have been evaluated in a realistic scenario with two remote
virtual users in order to get initial evidence of its potential benefits, when compared to the
same scenario using a peer-to-peer communication, as baseline. The obtained results show

a significant reduction in terms of computational resources (RAM, CPU, GPU) and bandwidth
consumption, thus proving its benefits and encouraging further research on this area.

The contributions of this paper can provide relevant societal and economic benefits to our
society, by enabling hyper-realistic virtual meetings using inexpensive hardware, while
overcoming spatial barriers and travel requirements, and minimizing the environmental
burden. Section 2 highlights use cases and scenarios in which the XR-MCU can be
applicable. Section 3 briefly reviews the state-of-the-art in this area. Then, Section 4 presents
the XR-MCU and its key features. Section 5 describes the evaluation setup, and provides the
obtained results. Finally, Section 6 brings forward some future research plans, and provides
our conclusions.

2. USE CASES AND SCENARIOS

Multi-party videoconferencing services are currently used for a wide variety of use cases and
scenarios, including: remote gatherings between family members and relatives, tele-work, e-
learning, and other professional settings, like virtual meetings and tele-consultation. Their
usage has been recently multiplied by the current social distancing measures due to the
COVID-19 outbreak. This situation not only imposes further scalability requirements, but also
higher reliability and quality requirements: the adoption of such tools is no more an alternative,
but the solution.

3D volumetric holoconferencing services provide the opportunity of significantly enhancing
these remotely shared experiences, in terms of realism, immersion and quality of interaction
(as they enable a full body representation and 3D space reconstruction). The XR-MCU is a
key component to bring real-time holoconferencing services into reality in home-based
scenarios using off-the-shelf hardware devices, especially for multi-party Social VR, or more
generally Social XR. Beyond those scenarios cited for video conferencing, the XR-MCU can
act as an enabler for the next Social XR use cases, among others:

• Shared video watching (e.g. [6]) in entertainment, educational and professional
environments.

• Virtual conferences and meetings (e.g. [7])

• Culture and virtual tours (e.g. [8]).

• Massive events, like concerts and sports (e.g. [9]).

• Gaming, where real representations of gamers can replace avatars.

3. RELATED WORK

The strategy of reducing the computational load of videoconferencing client machines, by
moving the heaviest operations to the cloud, has been widely addressed for communications
based on traditional 2D video. The MCU concept introduced in the ’90s has been indeed
deeply analyzed and considered in standardization works, like the ITU H.323
recommendation that defines the protocols to provide audio-visual communication sessions
[10]. The community has also devoted efforts on adapting the MCU concept to newly
developed video distributions systems (e.g. [11], [12]), and converting it into an essential
component of virtualization architectures, like the widely known Cisco Unified Computing
System (UCS) [13]. Likewise, the idea of virtualizing part of the processing load for immersive
applications has been suggested by the Global System for Mobile Communications
Association (GSMA) [14], providing a high level architecture with shared computational
resources in the cloud for VR/AR services.

The research contributions oriented to the optimization of volumetric video transmission
systems not only can exploit the previous work on traditional 2D video, but also the new
strategies generically defined for other immersive formats. A relevant example is given by
viewport-aware adaptive streaming strategies for 360 degree videos, like the one by Ozcinar
et al. [15], which consists of dividing the content into tiles, and providing higher quality tiles to
the region associated to the users’ viewport. The adaptation of such strategy has been

explored by Park et al. [16], by proposing an adaptive streaming strategy for point cloud based
volumetric video. Instead of a 2D segmentation of the 360-degree videos, they utilized a
volumetric approach for tiling in which the three-dimensional environment is divided into cubic
sections. Such streaming strategy considers both bit-rate and user’s viewpoint to define which
tiles and quality to provide. Other peer-to-peer oriented Point Cloud streaming strategies have
been proposed by Hosseini and Timmerer [17] including a resolution scalability strategy to
meet a, trade-off between quality and bandwidth. Qian et al. [18] proposed a volumetric video
streaming system for commodity mobile phones, where heuristics are used to decide on
representations and to use edge computing features to reduce the computational load at the
client side. The usage of an MCU for videoconferencing in three-dimensional environments
has been explored by Dijkstra et al. [19] for Social VR applications as the one presented by
Gunkel et al. [6]. In particular, that work applies the MCU features to scenarios in which users
are represented as multi-view plus depth video. This way, it is possible to take advantage of
the bi-dimensional nature of such content to minimize the load at the client side.

In summary, the presented XR-MCU provides the next key advantages and/or novel aspects
compared to the existing state-of-the-art solutions:

First time to the MCU concept has been applied to fully three-dimensional, volumetric video
represented as Point Clouds.

Tasks such as resolution selection and viewport aware streaming are now performed in a
cloud-based management system for an efficient distribution of volumetric video.

The availability of a virtualized cloud-based XR-MCU and its features, allows every user to
send a full resolution of their volumetric representations.

The next section describes the architecture, components and aforementioned features of the
proposed XR-MCU, which aims at being a standard-compliant enabler for multi-user
volumetric conferencing services.

4. EXTENDED REALITY MULTIPOINT CONTROL UNIT (XR-MCU)

This section presents the design of the proposed XR-MCU. Section 4.1 describes how the
XR-MCU component is integrated in a multi-user system, including the interaction with other
components, and the specified inputs and outputs. Then, the specific features provided by
the XR-MCU, and their effects on the holoconferencing experience, are described in Section
4.2.

Figure 2: XR-MCU Overall Architecture

4.1. XR-MCU architecture and sub-components

We consider a holoconferencing network where a number of 𝑁 users are connected to the
XR-MCU. A graphical representation of the overall architecture of the system is shown in
Figure 2. Each user’s client includes: i) a Capture and Reconstruction module, in charge of
creating, compressing and transmitting the volumetric video, represented as Point Clouds,
and captured by a number of RGBD sensors (e.g., 1-4); and ii) a Rendering module, which is
able to receive, decode and represent the volumetric videos of the other users in a VR/AR/XR
display. Apart from the volumetric video, the user’s client is in charge of transmitting the
Viewpoint and Position of the user. This will allow the XR-MCU handling such information to
provide an optimized content stream for each user. The XR-MCU interfaces to the user’s
clients are the Reception and Transmission modules. The first one is in charge of receiving
and decoding the videos from the users, before providing them to the Core Sub-system. The
second one compresses and transmits the specific content to each user. The Core Sub-
system includes the main features available in the XR-MCU, explained next.

4.2 XR-MCU Features

The XR-MCU Core Sub-system implements key features that triggered in a coordinated and
event-driven manner, allow a significant reduction of the client computational load and
bandwidth consumption, providing an optimized stream to each user. These features are
explained in the following sub-sections.

Volumetric Video De/Coding

The Reception Module receives one Point Cloud per user and provides the incoming streams
to a number of decoder instances equal to the number of users. Once uncompressed, the
data are provided to the Core Sub-system which performs a series of optimization task
(explained next) to provide a tailored stream for each client. Then, the Core Sub-system
provides the streams to the Transmission Module, with includes a dynamically instantiated
encoding instance for each client connected to its corresponding transmission component via
MPEG DASH. The XR-MCU has been conceived with the goal of being compatible with the
most popular volumetric video compression methods that can perform a real time, low latency,
encoding and decoding of volumetric content. The version presented in this paper uses the
MPEG anchor implementation developed by Mekuria et al. [20] using only Intra frames. The
aforementioned details are provided for completeness. However, the specific encoding and
adaptive transmission strategies for the DASH streams are out-of-scope of this paper.

Level of Detail (LoD) Selection

Traditional MCUs for videoconferencing are capable of controlling the resolution of the
incoming videos, adapting it according to the bandwidth capacity and to the client device
characteristics. In a volumetric video, the resolution can be adjusted by tuning a parameter
called Level of Detail (LoD) [21] which controls the geometrical characteristics of the video,
usually represented as vertexes of polygons or simple three-dimensional points, in Cartesian
(x, y, z) coordinates. The adjustment and selection of appropriate LoDs is then a powerful
tool to save bandwidth and computational requirements, exploiting the knowledge about the
relative distance and positions of the elements in the 3D environment. When a user is
observing the 3D scene from a certain viewpoint, the other users will be perceived closer or
further depending on their relative positions. When users are close, dense point cloud
representations are needed, as having a high resolution becomes key. When users are further
away, the resolution can be lowered by downgrading the LoD. This will reduce the amount of
data to process, without potentially having a negative impact on the perceived quality of the
representation. The XR-MCU Core Sub-system includes a module called LoD Selection Logic
that after uncompressing the volumetric video, will apply a specific LoD downgrading level
depending on the users’ positions.

Figure 3: Example of LoD selection operated by the XR-MCU. Close User: High Representation in kept by the XR-MCU.

Far User: The XR-MCU can apply LoD downgrading

Figure 3 shows an example of the XR-MCU LoD
Selection Logic, where a user is receiving two Point
Clouds placed in different relative positions. On the left
we show how, without the XR-MCU, the two received
streams have similar resolutions. On the right, see how
the XR-MCU reduces the resolution of the further Point
Clouds, by analyzing the relative positions of the
volumetric elements. Figure 4 shows a visual
comparison of the two resolutions applied to the Point
Cloud when affected or not by the LOD Selection Logic.
Section 5 confirms how the application of such strategy
results in a reduced consumption of bandwidth and
computational resources.

Removal of non-visible volumetric video

In 2D videoconferencing systems, all pixels from the videos are needed because they are
fully visible to all active participants. In 3D systems, users can freely navigate around the
environment and look around. Therefore, not all the information may be needed by all the
users, or not for the whole duration of the session. In rendered 3D environments, the viewport
represents the portion of the virtual environment that is visible from the viewpoint of a specific
user. Therefore, at a specific time, users are able to visualize only certain elements, but will
not be able to see parts of the scene located outside the viewport. The delivery of the whole
data to all the participants would then result in an inefficient solution, having a significant
impact on the consumption of bandwidth and computational resources and bandwidth
consumption without enhancing the Quality of Experience (QoE). Therefore, the availability
of some logic, able to select the right information to be delivered at the right time becomes
fundamental for volumetric holoconferencing systems. The presented XR-MCU implements
a first version of this feature, by directly removing the data outside the user’s viewport from
the delivered stream for that specific user. The removal is performed by relying on the
viewport information reported by each client (i.e. the xyz position and viewing angle). Other
advanced (adaptive and hybrid) versions of this feature, like the ones introduced in Section
2, will be analyzed in future work. Figure 5 shows an example of how the XR-MCU considers
the users viewport to remove the part of the video that would not be visualized. Section 5
proves the benefits of this feature.

Fusion

Traditional MCUs are typically in charge of merging pixels of two or more videos from several
users in a videoconferencing session. If that is the case, every participant will receive and
visualize a merged and composed version of the content as a single 2D video. In volumetric
holoconferencing systems, the same layout and merging strategies (e.g., side-by-side) are
non-applicable, because each volumetric video is an independent structure with a geometry
that has to be placed in the 3D space, and will also depend on the user’s position.

Figure 4: Comparison of two resolutions
applied to the Point Cloud affected by the

LOD Selection

(a) Presence of data not visible by the end-user (b) Non-visible data removed by the XR-MCU

Figure 5: Example of non-visible data removal operated by the XR-MCU

However, the geometry of two or more volumetric videos can be fused considering a single
coordinate system. After selecting the appropriate LoD and removing the non-visible
information, the XR-MCU Core Sub-system performs, for each user, a fusion of the
representations of all visible participants and elements. This feature provides key benefits, as
each user client will just receive a single stream, without needing to execute N of the Point
Cloud receiver and decoder modules.

5. EXPERIMENTAL RESULTS

The experimental assessment presented in this paper is based on the use of a first
implementation of the proposed XR-MCU, comparing it to a system in which the volumetric
videos are delivered in a peer-to-peer fashion. The goal is to assess the benefits of using the
XR-MCU in a scenario with two volumetric videos compared to a baseline scenario without
the use of the XR-MCU. This section starts by describing the experimental setup in Section
5, then continues by detailing the evaluation methodology and metrics in Section 5.2, and it
concludes by presenting the obtained results in Section 5.3.

5.1. Experimental Setup

The setup used in this experiment considers a set of 10 simulated holoconferencing sessions
where one of three end-users receives the Point Clouds of two other users remotely
connected (although the networking aspects are out-of-scope of the paper). The sequences
considered in the tests are two among the ones available at the 8i Voxelized Full Bodies
database [22]: Red and Black and Longdress. In order to facilitate a real time processing of
the whole pipeline, the resolution of the two sequences have been downsampled to 65k points
and 78k points, respectively. In order to recreate a typical holoconferencing system, a set of
actions are forced to activate and assess the benefits of the XR-MCU features (Section 4).
The duration of each single session was 34 seconds. The forced actions in the
holoconferencing scenario are the following:

• Step 1: initial position purposely defined to receive the two Point Clouds at their
maximum resolution (65k and 78k points) within the viewport.

• Step 2: viewpoint panning, excluding Red and Black from the viewport to evaluate the
computational load reduction when the Non Visible Area Removal feature is active.

• Step 3: viewpoint panning, excluding Longdress from the Viewport to evaluate the
computational load reduction when the Non Visible Area Removal function is active for
this second simulated user.

• Step 4: user’s viewpoint back to the initial position.

• Step 5: simulation of user moving away from both Point Clouds to evaluate the benefits
when the LoD Selection feature is active.

The XR-MCU Fusion function, in charge of merging the sequences of several users into one,
is always active. For the comparison, the same sequence of actions is simulated also when
the volumetric videos are delivered in a peer-to-peer fashion, without the XR-MCU. All the
features presented in Section 4 have been implemented according to a CPU oriented

sequential programming model. At this stage, the implementation follows a sequential calls
composition without any parallelization technique, nor GPU implementation. The GPU
involved in this study is the one used at the end-user client machine, for the volumetric video
rendering. The specifications of the machine used as the client are the following:

• CPU: Intel Core i7-6700 @ 3.40GHz

• RAM: 16 GB @ 2133MHz

• GPU: NVIDIA Quadro K4200 4GB GDDR5

• NET: Realtek PCIe GbE Family Controller

5.2. Evaluation Methodology and Metrics

The tests consisted of 10 iterations with the XR-MCU plus 10 iterations without the XR-MCU.
In each iteration samples of the following set of metrics were collected by using a tool from
Montagud et al. [23]:

• CPU usage at the client machine (in %).

• GPU usage at the client machine (in %).

• Memory usage at the client machine (in MBs).

• Bandwidth consumption (in Mbps).

5.3. Results

In order to provide a thorough comparison, we have performed a simulation of 10 sessions
without the XR-MCU and 10 sessions using the XR-MCU. During each session, the
mentioned metrics have been sampled along the whole experience. The final results show
the average of each sample over the 10 iterations, showing the different benefits of the XR-
MCU. Figure 6.a shows the reduction of exploiting the XR-MCU on CPU usage when the XR-
MCU is included in the holoconferencing session, when compared to the baseline condition
(without the XR-MCU). The intervals in which the XR-MCU features are active are specified
on the top part of the figure. When the XR-MCU is not used, the percentage of CPU usage
does not suffer strong fluctuations along the duration of the 10 sessions, due to the constant
incoming stream from the two Point Clouds. When the XR-MCU is used, it is possible to notice
that, initially, when only the Fusion feature is active, there is already a considerable gain in
terms of CPU usage. The gain is considerable when, afterwards, the XR-MCU performs the
Non Visible Areas Removal actions, first excluding the Longdress sequence, and then
excluding Red and Black. The CPU usage increases again when the 2 Point Clouds are newly
available (see sample 15 in Figure 6.a) and then starts being further reduced when the LoD
Selection function is active. Figure 6.b shows the evolution for the percentage of GPU usage.
In this case, the benefits of the Non Visible Areas Removal function are less noteworthy than
for the CPU usage, because the GPU is in charge of the rendering of the visible part of the
3D scenario; however, when the LoD Selection function is active, it is possible to notice a
gain. The GPU load is indeed reduced thanks to the lower number of voxels needed to
represent the Point Clouds. The overall
average results for the 10 iterations are
summarized in Table 1, by also including
additional ones regarding the RAM and
bandwidth consumption. It is possible to
observe how the introduction of the XR-
MCU resulted in a reduction of 69% of
the CPU usage, 7% of the GPU usage,
18% of memory usage and of 84% of
bandwidth consumption. For completeness, the additional latency introduced by the XR-MCU
has also been evaluated. In average, the XR-MCU adds a latency of 89 ms when the Point
Clouds are both at their lowest resolution and an average of 160 ms when they are both
visible at their maximum resolution. For the intermediate cases the latency is kept in between

- No XR-MCU XR-MCU Δ Reduction

CPU (%) 25 7.8 68.7%

GPU (%) 27.2 25.4 6.6%

RAM (MBs) 445.5 366.3 17.85%

BW (Mbps) 92.3 14.9 83.9%

Table 1: Average results in terms of resources consumption

those values. A demo showing the virtual scenarios, the set of simulated actions, and the
registered metrics can be watched here: https://youtu.be/qEENaFVeLrk.

 (a) CPU usage (b) GPU usage

Figure 6: Percentage of CPU and GPU usage: comparison between sessions with and without the XR-MCU.

6. DISCUSSION AND FUTURE WORK

The presented results are obtained with the XR-MCU based on a sequential implementation.
Next releases of the XR-MCU will include a parallelization of CPU or GPU cores to improve
the performance in terms of scalability, delays and quality

6.1. Parallelization

Serving a volumetric video stream for multiple users involves a huge processing burden.
Besides, a user may join or leave the session while other users are using XR-MCU, and this
should have no adverse effect on the users who are currently being served by XR-MCU. In a
sequential implementation, the CPU will serve the users one by one. Additionally, the required
tasks for every single user are performed one by one. Provided that the CPU can meet the
computational requirements for Point Clouds processing and streaming, the sequential
approach is a valid solution. However, as the number of the users or the density of the Point
Clouds rise, the CPU may spend more and more time on serving the data from all users. This
implies that the data from every user has to wait for all the data from other users to be served
before being served by XR-MCU. To tackle this potential hardship, a future implementation
of XR-MCU will adopt a parallel approach. In a parallel implementation, the data from all the
users will be served immediately upon the reception of a new incoming frame. As soon as a
new frame is received from any user, an available core will undertake the processing of the
new frame, regardless of the situation of the data from any other user. Not only the frames of
all the users will be processed in parallel simultaneously, but also the required tasks of every
single user will also be conducted in parallel. That is to say, while e.g. the current frame is
being encoded and a new frame just comes in, the new frame will instantly be captured and
fed to the decoder along with the ongoing encoder tasks. At the same moment, the data from
all the other users are also being served by XR-MCU. This way, the waiting times for XR-
MCU to process the frames from other users will be significantly reduced, which will also
reduce the total latency of XR-MCU, and thus the end-to-end latency of the service.

6.2. GPU Implementation

All the aforementioned equations are derived with the assumption of available hardware
resources to catch the incoming Point Clouds immediately upon reception. Experimentally,
this assumption can be very challenging as the number of available CPU cores are limited.
So, if all the CPU cores are serving other tasks and a new frame is just received, then the
performance of the parallel XR-MCU will be downgraded. The GPU is capable of running
billions of threads in parallel and will considerably increase the XR-MCU processing
capabilities. The numerous GPU cores can run plenty of tasks in parallel and will definitely

https://youtu.be/qEENaFVeLrk

improve the XR-MCU performance. However, special care should be paid to the time required
for CPU-GPU data exchange and the lower amount of available memory in GPU.

7. CONCLUSIONS

The holoportation concept is attracting the attention of the research and industry community.
Volumetric video systems involve high requirements in terms of data exchange and
processing, challenging the typically limited resources at the client side. In addition, in 3D
holoconferencing scenarios, not all the information needs to be delivered to the users, and
not always is the highest resolution necessary. To avoid unnecessary operations and optimize
the heaviest ones, the proposed XR-MCU includes a set of features providing most adequate
stream to each user. This paper has proved that the use of the XR-MCU provides significant
savings in terms of bandwidth, CPU, GPU, and RAM consumption. These benefits are
achieved at the cost of a reasonable extra latency, mainly due to the sequential CPU
implementation of the XR-MCU. Future work will be targeted at using GPU based
programming models and parallelization techniques to improve the performance in terms of
latency, scalability and quality (i.e. by optimizing the media processing tasks). In addition,
further research will be devoted at determining the most appropriate strategies for LoD
selection and handling the non-visible elements based on different aspects, like distance,
navigation patterns, number of volumetric media elements, etc. Finally, scalability and QoE
tests will be conducted for each one of the provided features by the XR-MCU.

8. REFERENCES

[1] MH Willebeek-LeMair, Dilip D Kandlur, and Z-Y Shae. 1994. On multipoint control units
for videoconferencing. In Proceed. of 19th conf. on local comp. networks. IEEE, 356–364.

[2] Online, Available: https://www.sciencealert.com/one-third-of-the-world-s-population-are-
now-restricted-in-where-they-can-go

[3] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo Cesar,
Philip A Chou, Robert A Cohen, Maja Krivokuća, Sebastien Lasserre, Zhu Li, et al. 2018.
Emerging MPEG standards for point cloud compression. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems 9, 1 (2018), 133–148.

[4] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang, Adarsh
Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh Khamis, Mingsong Dou,
et al. 2016. Holoportation: Virtual 3d teleportation in real-time. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology. 741–754.

[5] Kyungmo Park. [n.d.]. Network Based Media Processing. ISO/IEC JTC1/SC29/WG11
N18270, January, 2019.

[6] Gunkel, Simon NB, Hans Stokking, Tom De Koninck, and Omar Niamut. 2019. Everyday
photo-realistic Social VR: communicate and collaborate with an enhanced co-presence
and immersion. IBC 2019, Amsterdam (The Netherlands), October 2019.

[7] Duc Anh Le, Blair MacIntyre, Jessica Outlaw, Enhancing the Experience of Virtual
Conferences in Social Virtual Environments, Virtual Conferencing Workshop (VR in VR),
IEEE VR 2020, Atlanta (US), March 2020

[8] Redouane Kachach, Pablo Perez, Alvaro Villegas, Ester Gonzalez-Sosa, Virtual Tour: An
Immersive Low Cost Telepresence System, Virtual Conferencing Workshop (VR in VR),
IEEE VR 2020, Atlanta (US), March 2020

[9] Hayashi, K., Saito, H., Synthesizing free-viewpoint images from multiple view videos in
soccer stadium. In: International Conference on Computer Graphics, Imaging and
Visualisation (CGIV'06), pp. 220{225. IEEE (2006)

[10] Gary A Thom. 1996. H. 323: the multimedia communications standard for local area
networks. IEEE communications Magazine 34, 12 (1996), 52–56.

https://www.sciencealert.com/one-third-of-the-world-s-population-are-now-restricted-in-where-they-can-go
https://www.sciencealert.com/one-third-of-the-world-s-population-are-now-restricted-in-where-they-can-go

[11] M Reha Civanlar, Oznur Ozkasap, and Tahir Çelebi. 2005. Peer-to-peer multipoint
videoconferencing on the Internet. Signal Processing: Image Communication 20, 8
(2005), 743–754.

[12] Junlin Li, Li-wei He, and Dinei FlorΩncio. 2007. Multi-party audio conferencing based
on a simpler MCU and client-side echo cancellation. In 2007 IEEE International
Conference on Multimedia and Expo. IEEE, 84–87.

[13] Silvano Gai, Tommi Salli, and Roger Andersson. 2010. Cisco Unified Computing
System (UCS)(Data Center): A Complete Reference Guide to the Cisco Data Center
Virtualization Server Architecture. Pearson Education.

[14] Global System for Mobile Communications Association. Cloud AR/VR Whitepaper.
www.gsma.com/futurenetworks/wiki/cloud-ar-vrwhitepaper. Accessed:2020-03-09.

[15] Cagri Ozcinar, Ana De Abreu, and Aljosa Smolic. 2017. Viewport-aware adaptive 360
video streaming using tiles for virtual reality. In 2017 IEEE International Conference on
Image Processing (ICIP). IEEE, 2174–2178.

[16] Jounsup Park, Philip A Chou, and Jenq-Neng Hwang. 2019. Rate-utility optimized
streaming of volumetric media for augmented reality. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems 9, 1 (2019), 149–162.

[17] Mohammad Hosseini and Christian Timmerer. 2018. Dynamic adaptive point cloud
streaming. In Proceedings of the 23rd Packet Video Workshop. 25–30.

[18] Feng Qian, Bo Han, Jarrell Pair, and Vijay Gopalakrishnan. 2019. Toward practical
volumetric video streaming on commodity smartphones. In Proceedings of the 20th
International Workshop on Mobile Computing Systems and Applications. 135–140

[19] Sylvie Dijkstra-Soudarissanane, Karim El Assal, Simon Gunkel, Frank ter Haar, Rick
Hindriks, Jan Willem Kleinrouweler, and Omar Niamut. 2019. Multi-sensor capture and
network processing for virtual reality conferencing. In Proceedings of the 10th ACM
Multimedia Systems Conference. 316–319.

[20] Rufael Mekuria, Kees Blom, and Pablo Cesar. 2016. Design, implementation, and
evaluation of a point cloud codec for tele-immersive video. IEEE Transactions on Circuits
and Systems for Video Technology 27, 4 (2016), 828–842.

[21] David Luebke, Martin Reddy, Jonathan D Cohen, Amitabh Varshney, Benjamin Watson,
and Robert Huebner. 2003. Level of detail for 3D graphics. Morgan Kaufmann.

[22] Eugene d’Eon, Bob Harrison, Taos Myers, and Phil A. Chou. 2017. 8i voxelized full
bodies-a voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1
(MPEG/JPEG) input document WG11M40059/WG1M74006 (2017).

[23] M. Montagud, J.A. De Rus, R. Fayos-Jordan, M. Garcia-Pineda, and J. Segura- Garcia.
2020. Open-Source Software Tools for Measuring Resources Consumption and DASH
Metrics. In Proceedings of the 11th ACM Multimedia System Conference.

http://www.gsma.com/futurenetworks/wiki/cloud-ar-vrwhitepaper

