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ABSTRACT 

Existing computer vision based emotion recognition systems are trained to 
classify images of faces into a very limited number of emotions. In this 
work, we take a different approach and train a convolutional neural network 
that is able to distinguish subtle differences in facial expressions appearing 
in both individual images and videos.  
For this effect, we learn a feature embedding network which maps a facial 
image into a position in embedding space, such that it is positioned close 
to similar facial expressions compared with other expressions. We train the 
feature embedding using triplet loss on the publicly available FEC dataset. 
The proposed facial expression model is lightweight (4.7M parameters), 
and obtains a triplet prediction accuracy of 84.5% -- very close to the 
average human performance of 86.2%.  
A key contribution of this work is adapting the model which has been 
trained on images can work reliably on video content. To this end, we 
propose a novel automatic face quality assessment, which allows us to 
filter out faces that are unsuited for expression analysis. We validate the 
proposed approach on several applications, including searching video 
content for a specific expression from  a single query face, generating face 
expression statistics of various actors appearing in a video, as well as 
generating face expression summaries. 

 

INTRODUCTION 

Facial expressions are one of the most important forms of non-verbal communication 
between humans. As Alan Fridlund, a psychology professor at University of California Santa 
Barbara, puts it: “our faces are ways we direct the trajectory of a social interaction”. While 
often used interchangeably, it is important to highlight that facial expressions and emotions 
are not the same thing. Emotions are things that we feel, and are caused by neurons 
shooting electrons around pathways inside our brains. Facial expressions refer to the 
positions and motions of the muscles beneath the skin of a face. They can be an indicator 
of the emotion we are feeling, but do not always reflect our emotion. For example, we can 
be smiling but be in an emotional state that is far from happy. Rather than teaching a 
machine the ability to classify a limited set of “emotions”, in this work we set out to train a 
system that can distinguish facial expressions instead.  

A comprehensive and objective way of describing facial expressions is the Facial Action 
Coding System (FACS), originally proposed by Ekman and Friesen [1]. FACS specifies 32 
atomic facial muscle actions which are called action units (AU), which can be used to 



        

objectively describe any facial expression. Since it takes a trained human expert an hour to 
score one minute of video, a lot of research efforts went into automating facial expression 
analysis; see Martinez et al. [2] for a comprehensive survey. Due to the complexity involved 
in training a system to classify a face into 32 AUs – in particular with respect to collecting a 
large enough dataset – the most popular automatic approaches still resort to directly 
classifying faces into six (or seven) basic emotions pioneered by Ekman [3], for which a 
number of publicly available datasets exist. Li and Deng [4] provide a comprehensive 
overview over the datasets, along with an extensive study on deep learning based 
categorical facial expression methods. 

Our aim is to be able to distinguish facial expressions at a very fine granularity. While 
appealing from a theoretical point of view, training a system that explicitly models the 32 
AUs defined by FACS (and then combines them to facial expressions) is a laborious task to 
say the least. In this work, we follow an idea proposed by Vemulapalli and Agarwala [5], 
which propose a Facial Expression Comparison (FEC) framework that directly learns to 
distinguish facial expressions. This is achieved by training a system using triplets of faces, 
each annotated with which face is most dissimilar to the other two. To the extent that the 
dataset contains facial expressions where specific AUs are activated, this provides an 
intrinsic way of learning to distinguish different combinations of AUs without the need to 
explicitly label the faces.  

 To summarize, the key contributions of this work are: 

• a simplified architecture to analyze facial expressions which produces state-of-the-
art triplet prediction accuracy; 

• the ability to add custom facial expressions by providing just one “reference face”, 
without the need for retraining the model.  

• the ability to distinguish facial expressions at a much more fine-grained level; for 
example, rather than just being able to tell that someone is smiling, we can reliably 
quantify the intensity of the smile. 

• a novel automatic face quality assessment to enable accurate and stable expression 
analysis in videos. It is able to filter out faces that are unsuited for expression analysis, 
like in frames where compression and resolution artefacts have distorted the quality 
in face pixels, or when the head pose of a person is not suitable to get accurate 
expression estimations.  
 

The remainder of this paper is organized as follows. First, we present our Facial Expression 
Embedding architecture (FEENet), which forms a key ingredient in the proposed custom 
facial expression analysis framework. Next, we show how the per-image facial expression 
embeddings can be extended to work on videos. In particular, we present an automatic face 
quality assessment (FaceQA), which allows to filter out faces that are unsuited for facial 
expression analysis. We then present a quantitative comparison of the FEENet architecture 
with state-of-the-art, and qualitatively evaluate the customized facial expression analysis on 
two applications.  
  



        

 

Figure 1. Proposed FEENet architecture to extract facial expression embeddings from 
images. Each detected face gets aligned into a reference coordinate system and resized. The 
proposed facial expression embedding network (FEENet) consists of a EfficientNet-B0 
backbone, followed by two fully connected (FC) layers that reduce the dimensionality of the 
embedding vector from 1280 to just 16. Lastly, we apply L2 normalization to obtain the facial 
expression embedding vector. 

LEARNING TO DISTINGUISH FACIAL EXPRESSIONS 

Our motivation is to build a method that can distinguish facial expressions at a fine level of 
granularity which runs efficiently so that it is suited for video analysis. In this section, we give 
an overview over the key ingredients of how we trained the facial expression embedding 
network, which allows us to distinguish facial expressions at a fine level of granularity on 
images. The next section will then show how the framework can be extended to work on 
videos.  

We start by presenting pipeline and architecture used to extract facial expression embedding 
vectors from images. We then provide some details on the dataset used, and finish the 
section by providing details about the loss function we use. 

Face Expression Embedding Pipeline and Architecture 

As shown in Figure 1, the first step of our processing pipeline is to detect the faces in an 
image; we use the recently proposed RetinaFace by Deng et al. [6]. After this, we use a 
facial landmark detector  to extract the location of the eyes, the nose tip, as well as both 
sides of the mouth. Much more sophisticated landmark extractors that extract over 60 
landmarks exist, but we found this one to be sufficient, as we are only using it to align the 
landmarks into a reference coordinate system; essentially, we undo rotation and scale the 
face such that the inter-ocular distance (distance between the eyes) is 70px, and crop the 
face to 224x224 pixels. 

This aligned face is then input to a CNN, which extracts a feature vector. We tried a variety 
of CNN architectures, and found that the recently proposed EfficientNet (Tan and Le [7]) 
performs best as backbone architecture. More specifically, the proposed facial feature 
extraction uses EfficientNet-B0 as backbone, which outputs a 1280-dimensional feature 
vector. This feature vector is then passed through two fully-connected layers (FC), reducing 
the dimensions down to just 16. Lastly, we apply L2-normalization to obtain the facial feature 
embedding. The resulting facial expression embedding network (FEENet) is very simple and 
lightweight, requiring just 4.7M parameters. 

 



        

 

Figure 2. Illustration of the goal of training with triplet loss, which allows to train an embedding 
where the embedding distance between more visually similar facial expressions is small. 
𝑑(𝑖, 𝑗) represents the distance between facial expressions of face i and j.  

Dataset 

In order to train FEENet, we need an appropriate dataset that contains a large number of 
annotated samples. As mentioned in the introduction, our goal is to learn fine grained details 
between facial expressions, which cannot be achieved by using datasets that are annotated 
with a limited set of (basic) emotions. In this work, we use the Facial Expression Comparison 
(FEC) published by Vemulapalli and Agarwala [5]. In this dataset, we are given triplets of 
face images, where at least six human annotators had to select the face where the facial 
expression is most dissimilar to the other two faces of the triplet. The images of these triplets 
have been carefully sampled from an internal emotion dataset that contains 30 different 
emotions; see [5] for more details. The original training  dataset contains around 130K faces, 
which are combined to a total of 360K triplets where at least 60% of the raters agreed on 
the annotation. When we downloaded the dataset, only around 80% was still accessible. 

Loss Function 

Our goal is to learn a feature embedding network, which takes as input a face image and 
maps it into a location in a facial expression embedding space such that the distance 
between embedding positions of faces with similar expressions is small, but is large for faces 
with different expressions. We train the facial feature embedding network using a triplet loss 
function 𝐿(𝑎, 𝑝, 𝑛) (Chechik et al. [8]), which encourages the distance between the more 
similar facial expressions (denoted as anchor 𝑎 and positive 𝑝) to be smaller than the 
distance of these two to the third facial expression of the triplet (denoted as negative 𝑛). We 
can write the triplet loss function as follows: 

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡(𝑎, 𝑝, 𝑛) =   max (0, ‖𝐹(𝑎) − 𝐹(𝑝)‖2
2 − ‖𝐹(𝑎) − 𝐹(𝑛)‖2

2 + 𝜃)

+ max (0,  ‖𝐹(𝑎) − 𝐹(𝑝)‖2
2  − ‖𝐹(𝑝) − 𝐹(𝑛)‖2

2 + 𝜃), 

where 𝐹(𝑥) is the feature embedding network, and 𝜃 is the margin (which we empirically set 
to 0.2). The margin sets a bound on the minimum distance we want dissimilar facial 
expressions to have. On the left of Figure 2, we see a possible situation of the distances of 
one particular triplet (there are hundreds of thousands such triplets in the training set) before 
training, where the distances between the anchor 𝑎, the positive 𝑝, and the negative 𝑛, are 
very similar. Using the above triplet loss function, we can achieve that the distance between 
the anchor and the positive, denoted as 𝑑(𝑎, 𝑝), is much smaller than 𝑑(𝑎, 𝑛) and 𝑑(𝑝, 𝑛). 



        

 

Figure 3. High-level overview of the proposed facial expression analysis pipeline for videos. 
First, we run face detection and subsequent automatic face quality assessment (FaceQA), 
which rejects faces that are blurry and/or too sideways and hence unsuited for facial analysis. 
Next, we cluster all faces that passed FaceQA into distinct identities. Next, we extract facial 
expression embeddings using the proposed FEENet, which are temporally pooled for stability. 

FACE EXPRESSION ANALYSIS FRAMEWORK FOR VIDEOS 

So far, we have shown how we trained a model that is able to distinguish facial expressions. 
The focus of this work is to propose a practical solution that allows to perform (custom) facial 
expression analysis in videos. Figure 3 shows the main building blocks of the proposed 
framework. We run face detection on all video frames, and align them into a common 
coordinate system. Since not all faces are suited for face expression analysis, we run them 
through an automatic face quality assessment (FaceQA). All faces that pass FaceQA are 
then clustered into distinct identities, after which we extract facial expression embeddings 
using the proposed FEENet. As a last step, the embedding vectors are temporally pooled 
(per identity) to improve stability and robustness. In the following, we present the 
fundamental building blocks in more detail. 

Automatic Face Quality Assessment (FaceQA) 

The face detector and alignment algorithm we use, RetinaFace (Deng et al. [6]), extracts 
very small and blurry faces also, not all of which lend themselves for subsequent face 
analysis. We hence propose an automatic FaceQA box that allows us to filter out faces that 
are unsuited. As shown in Figure 4, we identify two types of faces that cause issues, namely 
a) blurry faces, and b) faces that are sideways (e.g., facing away from the camera). We now 
provide a detailed description of the two blocks. 

a) Sharpness Score 

We compute a sharpness score sid to assess the sharpness of an image, which assesses 
how much high-frequency content is around facial landmarks. In order to avoid that blurry 
background around the face affects the sharpness score, we assess sharpness only around 
facial landmarks extracted during face detection.  

For all patches, we assess the amount of high-frequency content, obtained by subtracting a 
blurred patch from the original patch. The sharper the original patch, the larger the difference 
with respect to the blurred patch will be. 

More formally, let us denote the patches of size MxM around the landmarks as 𝑃𝑘. Let us 
further define a Gaussian blur filter as 𝑓. Then, the sharpness score for a patch is computed 
as: 

𝑠𝑖𝑑𝑘 =
1

𝑀2
∑ ∑|𝑃𝑘 − 𝑃𝑘 ∗ 𝑓|[𝑖, 𝑗]

𝑀

𝑗=1

𝑀

𝑖=1

 



        

 

 

Figure 4. Overview of the proposed automatic face quality assessment. After face detection 
and alignment, the extracted faces together with facial landmarks are input to FaceQA. First, 
we compute a sharpness score around facial landmarks. For faces that pass the sharpness 
threshold, we subsequently compute the face yaw, which allows to reject faces that are too 
sideways. Only faces that pass both stages are passed onto subsequent facial expression 
analysis. 

 

The sharpness score is then simply the average of the individual sharpness scores, i.e., 

𝑠𝑖𝑑 =
1

𝐾
∑ 𝑠𝑖𝑑𝑘

𝐾

𝑘=1

 

In practice, we find that patches around the eyes are most reliable, and hence only assess 
sharpness there. That is, the sharpness score is simply the average of the sharpness 
assessed around the two eyes. We empirically set the threshold to 3.0, meaning that we 
reject all faces that have a sid lower than 3.0. 

b) Sideways Faces 

In order to get consistent and accurate predictions, we align faces such that the distance 
between the eyes is 70 pixels. For faces that are too sideways, only one eye is visible and 
thus the alignment does not work well. We find that such images are frequently causing 
problems, and hence filter them out. 

To this end, we estimate the head pose using perspective-n-point (Lepetit et al. [9]) on the 
face landmarks extracted during face detection, and reject all faces where 

|𝑦𝑎𝑤| > 50 degrees 



        

Faces which are either blurry and/or sideways as defined above are deemed unsuited for 
further analysis and rejected. All the accepted faces are passed into the next step, which 
aims at clustering faces into distinct identity clusters. 

Automatic Face Clustering into Distinct People Clusters 

In order to perform meaningful facial expression analysis on videos, we need to group 
extracted faces according to their identities. To this end, we use a pre-trained ArcFace-
ResNet100 (Deng et al. [10]), which is trained to output face features where the inter-face 
distance (i.e., face of the same person) is small, whereas the intra-face distance (i.e., face 
of different but potentially similar looking person) is large. Since the number of distinct 
identities in a video is unknown, we use a variant of DBSCAN (Ester et al. [11]) to cluster 
the face features into distinct identities. 

 

This concludes the description of the building blocks that allow us to extend facial expression 
analysis to videos. In the next section, we first evaluate the facial expression embedding, 
and then give two practical applications on how the proposed facial expression analysis can 
be used. 

EXPERIMENTS 

Face Expression Triplet Prediction Accuracy 

This section shows quantitative results for the architecture presented in the Architecture 
section. As mentioned earlier, at the time we downloaded the dataset, only around 80% of 
the FEC dataset was still available; this fact has to be taken into account when comparing 
our results with the one from FECNet by Vemulapalli and Agarwala [5], which had access 
to the whole dataset for training. 

 

Figure 5. Triplet prediction accuracy for Google AI’s FECNet and the proposed FEENet. On 
the right, we further show the average accuracy of human annotators on the FEC dataset. 
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Figure 5 compares the triplet prediction accuracy (i.e., the percentage of triplets where the 
distance between the anchor and the positive is smallest) of the proposed FEENet with 
FECNet; in addition, we show the average performance of the human annotators who 
created the ground truth labels for the FEC dataset. 

Despite its simpler architecture, the proposed FEENet has an absolute triplet prediction 
accuracy improvement of 2.7% over FECNet. To put these results in context, it is worth 
highlighting that the annotators who created the ground truth annotations for the FEC 
dataset have an average triplet prediction accuracy of 86.2%. In other words, the model we 
trained almost reaches human performance on this challenging task. 

 

Figure 6. Overview of the proposed custom face tagging framework. Input are all faces that 
passed the automatic FaceQA, sorted by their temporal order. We then extract facial 
expression embeddings for all faces, and apply a temporal filter on the embeddings. The 
pooled embeddings are then compared with the facial expression embeddings extracted from 
the faces in the custom database, which we show here in different colours for illustrative 
purposes. If the distance is below a set threshold (0.5 in our case), we mark the corresponding 
time segment with the matching facial expression. 

Application 1: Custom Face Expression Tagging In Videos 

We now turn our attention to an interesting application that is enabled by the proposed 
framework, namely the ability to tag any number of custom facial expressions in videos; we 
use Figure 6 to guide the description. A key ingredient of the proposed approach is the 
custom face expression database, which can be populated with faces depicting the facial 
expressions one seeks to tag. For every face added, we extract the facial expression 
embedding, together with one or more tags describing the facial expression. 



        

In order to tag the custom facial expressions, we proceed as follows. For every person 
cluster, we sort the faces according to their timestamps. Next, we use the proposed FEENet 
to extract the facial expression embeddings. These are then passed through a temporal 
pooling filter, which allows to control the stability of the facial expression(s). We use simple 
median pooling with a filter extent of 3 frames, and leave the exploration of more involved 
pooling strategies for future work. Every pooled facial expression embedding vector is then 
compared to the custom face expressions database, and if the distance is below a set 
threshold (0.5 works well in practice), the corresponding time frame gets tagged with the 
matching custom facial expression.  

It is important to highlight that adding new facial expressions does not involve any retraining. 
All that is required is one face depicting the facial expression of interest, together with the 
tag(s) describing the facial expression. This is drastically different from existing 
technologies, where a limited set of predefined emotions are trained (typically less than 10), 
where it is not possible to add new (emotion) tags without having to retrain the whole 
architecture using thousands of sample faces that show the desired emotion/facial 
expression. 

Performance in the Wild We choose a recording of the second presidential debate 
between Donald Trump and Joe Biden1 as an example to show how the proposed method 
performs on videos in the wild. As custom face expression database (i.e., reference faces), 
we extract seven typical facial expressions of Donald Trump, as suggested by a 
psychologist.2 We extract all faces for the two identities (Trump and Biden) from the 2-hour 
long video, and extract facial expression embeddings.  

Figure 7 shows the seven ‘reference’ face expressions (in yellow box), as well as the two 
closest matches to each reference face expression for both Trump and Biden. As can be 
seen, one reference face is enough for the proposed system to reliably detect the face 
expressions in the video. As evidenced by the best matches for Biden, face expressions can 
be queried across identities, allowing for interesting comparisons and statistics on face 
expressions.  
 
In the figure, we additionally show the appearance rate of specific face expressions, which 
is defined as the number of times a face expression is tagged, normalized by the total 
number of faces for an identity. As can be seen, both candidates predominantly exhibited 
an ‘alpha’ face. While Trump showed an exaggerated mouth in around 20% of the time, 
Biden smiled a lot more.  

 

 

1 https://www.youtube.com/watch?v=bPiofmZGb8o 

2 The seven faces of Donald Trump: https://www.theguardian.com/us-news/2017/jan/15/the-seven-faces-of-
donald-trump-a-psychologists-view 

https://www.theguardian.com/us-news/2017/jan/15/the-seven-faces-of-donald-trump-a-psychologists-view
https://www.theguardian.com/us-news/2017/jan/15/the-seven-faces-of-donald-trump-a-psychologists-view


        

 

Figure 7. Example of using custom facial expressions to gain meaningful insights into the 
facial expressions exhibited by different people. Reference faces and names extracted without 
modifications from article.2 

  



        

Application 2: Facial Expression Summaries 

We now turn our attention to another application that the proposed system naturally lends 
itself to, namely the automatic generation of facial expression summaries. In this setting, 
rather than looking for similar facial expressions, the aim here is to find dissimilar ones.  

 

Figure 8. Facial expression summary for  Jim Carey, with faces sampled from across various 
movies and TV shows. 

Figure 8 shows an example facial expression summary where we extracted faces for Jim 
Carrey from a range of movies and shows he starred in. We run agglomerative clustering 
(with N=10 clusters, using ward linkage and Euclidean distance) on facial embeddings 
extracted from all faces recognized as Jim Carrey, and show one representative face for 
each cluster. As can be seen, most of the facial expressions shown here are very different 
from the ones exhibited in the six basic emotions, and hence systems trained on basic 
emotions would not be able to distinguish them in such detail. Furthermore, the above 
example also reinforces the importance of being able to search facial expressions via a 
‘reference’ face, as it would be very hard to give a name/tag to most of these faces.  

CONCLUSIONS 

We have presented a system that can classify custom facial expressions in videos. Unlike 
prior art that is limited to a small set of emotions, the proposed system can be used to find 
custom facial expressions without the need of huge amounts of training data. We show that 
one 'reference face' that portrays the desired facial expression is sufficient to reliably find 
the facial expression. The current version uses a simple way of pooling face expression 
features. We demonstrated the capabilities of the proposed face expression features to 
power two different face perception applications, one for custom face tagging and another 
for making facial summaries.  

The face expression features can be extended to other diverse perception applications, by 
adding further classification, ranking, or clustering layers on top of it.  We are currently 
exploring applications such as advanced visual similarity search for videos that is able to 
match and rank actor expressions, creating automatic highlights of  interesting segments 
within and across videos by identifying expressions that tend to interest viewers and many 
more, which we will report in future work.   
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