

SERVER-SIDE CLIENT SYNCHRONIZATION FOR WATCH
TOGETHER APPLICATIONS USING CMAF LOW LATENCY

P. Gendron

Harmonic, France

ABSTRACT

Watch Together is an application that has been widely deployed during the
COVID-19 global health crisis. Early results show a much higher viewing
time when the feature is activated. The synchronization between the A/V
streamed content, combined with the need to have a low, end-to-end
latency compatible with the user interactions through integrated social
media apps, is challenging, especially when Watch Together is deployed
on all devices.

The classical approach involves delaying or accelerating each client and
reaching an equilibrium point after a certain time. The risk with this
approach is running into an overflow or underflow situation. Since it is not
a standard solution, it requires adaptation on each client, which has a
different ABR behavior. This results in a lot of effort with unpredictable
outcomes in some cases.

This paper will propose a scheme that uses the built-in synchronization
provided in CMAF low latency for both DASH and HLS, enabling a sub-
second time delay between clients based in the same geography.

INTRODUCTION

Sharing with friends is the ultimate experience during live sports events. Whether you are
in stadium or in a bar, feeling like you are part of a community is essential. In 2020, the
COVID-19 pandemic hindered socialization, causing a rise in emerging applications aimed
at virtually connecting groups of people attending popular sports events. Watch Together
applications have been branded under different names by several operators and widely
deployed for live and SVOD services. Early results show a much higher viewing time when
the feature is activated. That’s because having the ability to watch sports in social settings
combined with the capability to post stories on social media increases the enjoyment of
watching live events. See (1) “Co-Watching: Creating the Power of Togetherness,”
https://www.sportsilab.com/cowatch-ppi for more details on the attractiveness of Watch
Together applications.

Creating Watch Together services can be technically challenging, as there needs to be
synchronization between the A/V streamed content, combined with a low, end-to-end
latency compatible with the user interactions through integrated social media apps,
especially when deployed on all devices.

The classical approach involves delaying or accelerating each client and reaching an
equilibrium point after a certain time. The risk with this approach is running into an
overflow or underflow situation. The first emerging solutions are all proprietary, not relying
on standardized approaches, and generally require adaptation on each OTT client, which
has a different ABR behavior. This results in a significant effort to integrate the solution
into the various client platforms and players that the service provider is targeting, with
unpredictable outcomes in some cases. When more than a few clients need to interact,
guaranteeing full synchronization is challenging. The synchronization function will require
dedicated servers that will financially impact service profitability.

This paper will first describe the concept and building blocks of a generic Watch Together
application. Then it will describe the state of the art for currently deployed services and
conclude with a proposed scheme that uses the built-in synchronization provided in CMAF
(2) low latency for both DASH (3) and HLS (4), enabling a sub-second time delay between
clients based in the same geography. The results are based on testing performed on
various CMAF low-latency clients in both HLS and DASH modes.

WATCH TOGETHER CONCEPT AND GENERIC ARCHITECTURE

Watch Together Application Concept

While Watch Together services may have different commercial names and different
implementations for live content and VOD assets, they generally have a few similarities:

• A group of people wants to see a program as if they were co-located (or as if they
were really in the stadium for a sports event) and socialize about it while they are
watching

• This can apply to live events and pre-recorded content available on the service
provider’s back-end (i.e., typically a VOD asset)

• The viewing is possible on a wide range of devices and not limited to a brand or a
streaming protocol. Viewing can be done from any location where the streaming
service is available (we will assume the location is in the same country).

• As socializing is an important part of the experience, the Watch Together
application should not only provide the program video content but also offer viewers
an easy way to interact with the group. This can be a simple message chat box or
something smarter with the capability to have multi-user video chat.

• The construction of the watching group should be easy and dynamic, allowing last-
minute scheduling and the addition of new participants even during the event. Users
should be able to start a watching session and invite friends to join in using a link
distributed by the organizer.

• To ensure a smooth experience and a way to socialize in real time, as if the users
were co-located, the system should ensure that all the players from the different
users are aligned in time. Frame accuracy is not required but the inter-device delay
should be kept under one to two seconds.

The two categories of content that can be watched together have some requirement
differences:

• For VOD content, the delivery latency is not critical (startup time is much more
critical for a better user experience) so the synchronization between players is the
only dimension to consider.

• For live events, it is well understood that sports are the main category of events
driving the needs of Watch Together experiences. For sports, it is well known that
the viewing experience can be ruined by the lower latency of social networks or
concurrent delivery path of cable services. Therefore, OTT video streaming services
are now moving to low-latency delivery as the major streaming protocols, HLS and
DASH, both offer a low-latency extension in their protocol. The consequence is that
the synchronization between the different players shall be within the same one-to-
two second range but should also be done with a short end-to-end latency.

Watch Together Applications Architecture

Although they can be built with different approaches, the Watch Together applications
need to have various building blocks to offer the service, as shown in Figure 1.

A/V
Transcoder

OTT
Packager/Origin

Synchronization
engine

Social media
backend

Figure 1 - Watch together high-level architecture

Video Channel Preparation

The A/V transcoder and OTT packager/origin building blocks are regular OTT service
elements. They should make available the content to the players using the popular
streaming formats, HLS and DASH. There is nothing specific in this part of the workflow
except that for sports applications, low-latency delivery enables a better user experience.
This point will be covered in the section related to CMAF-based delivery.

Social Media Backend

As mentioned before, socializing with friends while watching a sports event, a TV show or
a series is an activity that’s in high demand. This covers mostly SMS, the chat and video
chat applications. As one can expect, these demands are greater with younger audiences.

Therefore, the Watch Together application should have or be connected to a social
network architecture. As this is usually linked to the service CMS, the backend can be
dedicated to the Watch Together application.

Synchronization Engine

As reported in (1), “anyone who has ever tried to watch a game with friends or family using
FaceTime or Skype knows that video synchronization is the biggest technical challenge to
a co-watching experience.”

The Watch Together architecture should therefore have a mechanism that ensures all
users are on the same point in the media timeline. The next sections of the paper will
develop the root causes why this is not intrinsic to OTT content distribution, as opposed to
a broadcast distribution. This synchronization engine should be reliable enough to support
the diversity of networking conditions affecting the different users of the group, keeping in
mind that these conditions can evolve during the session (e.g., some users can be on
wireless home access or even on mobile networks). The synchronization should have
mechanism to dynamically adapt to any drift a player can be exposed to.

A 2018 report said that 63% of sports fans were reluctant to renew subscriptions to a
streaming platform because of buffering and quality issues. This shows that the networks
are not yet perfect and adding a co-watching experience on top of classical video
distribution requires even better end-to-end control over the delivery.

Player Application

The player application installed on the device should manage two main flows:

• The main audio/video stream delivered in HLS or DASH.

• The social media stream that is delivered typically using WebRTC (5) for the
video chat part.

The main player part should be driven by either an overlay process controlled by the
synchronization engine or from the stream to properly decode and display the content in
such a way to ensure synchronization with the other players.

The social media part of the application should provide a state-of-the-art method to
communicate instantaneously, with no noticeable delays to enable live group interaction.
The expected level of performance is on par with using WhatsApp or any other messaging
application, but it is integrated in a single application.

The player may also have a mechanism to properly balance the bandwidth allocation
between the video (main channel) stream and the social media feeds, with possibly a
degraded mode where in the case of bandwidth limitation the main channel will be

privileged and the quality of the social media feed may be reduced or even fall into a
degraded mode (i.e., no social video feed, just a text chat).

STATE OF THE ART OF WATCH TOGETHER APPLICATIONS

Existing Services

Several new services have popped up in the last year as the first generation of
applications became mature enough for production. Their creation was also driven by the
new needs shaped by the pandemic and stay-at-home orders.

Figure 2 is a sample of major services providing a Watch Together feature either for live or
VOD on different types of client platforms.

Figure 2 - Major Watch Together services

These offerings rely on different vendor technologies that have been developed.
Nevertheless, there are some commonalities between them that will be examined in this
section, which will also define the current state of the art.

Watch Together applications target either VOD, live or both. Synchronizing different
viewers on a live stream is different from synchronizing everyone on a viewing session for
a VOD asset, which is fully available on a server. Therefore, the technology could be
different.

The current applications all rely, for the main audio/video feed synchronization, on an
overlay synchronization protocol. As a result, there is a need to make a specific, device-
dependant integration, at least per device families. This aspect explains that for these first-
generation services, a limited set of devices and platforms are offering the services. It is
well known that integration of non-standard mechanisms or protocols can be very long,
painful and require endless work as new platforms and devices enter the mix over time.

We will now quickly go into the main concepts used for the player synchronization in these
first-generation applications.

Current Concepts Used to Synchronize the Players

The first generation of Watch Together applications work with two types of approaches:

• Group locked on a master player

• Group locked on a central point computing a weighted average of delays that
each player needs to add to the live edge

Both approaches assume that to synchronize the different users the players need to have
a variable playing rate to follow a target by playing faster or slower than nominal speed.
This classical approach involves delaying or accelerating each client and reaching an
equilibrium point after a certain time. The risk with this approach is running into an
overflow or underflow situation. Since it is not a standard solution, it requires adaptation on
each client, which has a different ABR behavior. This results in a lot of effort with
unpredictable outcomes in some cases. When more than a few clients need to interact,
guaranteeing full synchronization is challenging, especially when each client belongs to a
different family of players.

The first approach where the group needs to be locked to a master player assumes that
this master (usually the first member of the watch party) has a reliable enough connection
to be online and reachable to each of the other players at any time. Indeed, the
synchronization is made at the startup or when a new user joins the watch party, but it
needs to be monitored over time, as any network glitch experienced by any user can affect
the synchronization of the group.

The second approach makes use of the synchronization engine located in the cloud or
server side to define the nominal live edge all the players should align to. This approach is
more reliable in that it doesn’t rely on one of the watch party member players. Rather it
requires an overlayed synchronization protocol between this central point and any of the
players.

The current deployed services based on one of these approaches shows a
synchronization error between the players of about three to four seconds at the worst, and
a few hundred milliseconds for the best-case scenario. This means that regardless of the
potential additional latency these systems may add to the live edge, and the players can
still be up to three to four seconds off or even completely out of sync in the case of
network problems, which can be problematic for live sport events.

Many of these applications, not built with the low-latency approach are offering relative
synchronization but with a latency up to 30 seconds compared with the live broadcast.
This can cause frustration when social networks not attached to this application offer live
information much faster.

EMBRACING THE POTENTIAL OF CMAF-BASED LOW-LATENCY STREAMING
STANDARDS

This section will describe how CMAF can be utilized to achieve better performance and
simplify the construction of a Watch Together system. We will first briefly review the way
latency is managed with regular DASH and HLS and see to what extent it clarifies the
current Watch Together synchronization situation (state of the art described previously).
Then we will describe the elements that can be used in the CMAF low-latency toolbox to
achieve natural synchronization between the different players.

Latency Management in Regular DASH and HLS Delivery

OTT streaming is based on two major delivery formats, HLS and DASH, which are
characterized by a delivery latency in the range of 10 to 30 seconds. OTT latency is much
more than what a traditional broadcast (i.e., cable, satellite or terrestrial) offers (usually in
the range to three to eight seconds from acquisition of signal to display). The significant
difference in latency is due to there being a totally different way to deliver the content to
users. For broadcast applications, a transport stream is sent over the air, and the player
needs to tune to the stream to demodulate/decode the signal.

Compared with broadcast, OTT systems make available a set of files that the player
should retrieve, creating requests (usually using HTTP protocol over an IP network). To
make these requests the players need to be informed of the new resource (i.e., the new
segment) availability, download the resource, and then put it in a buffer before starting the
decoding process. This difference in approach explains why, combined with smart buffer
management (required by delivery over the open internet), it cannot have the same
guarantee as delivery over a dedicated, managed network.

As the primary and initial usage of both HLS and DASH was mostly targeting VOD, the
latency has not been addressed as a critical parameter, and this was not a topic of
differentiation between the players. The result is that most regular OTT services currently
deliver quite large latency compared with the live stream, but what’s even worse (for an
application like Watch Together) is this latency has a lot of variation from one player to
another.

Different methods to address the ABR strategy and associated buffer management,
identified as the main problem, have been developed as proprietary solutions by player
vendors. This is not under the service provider’s control and therefore a variety of
latency can be experienced by subscribers depending on the player/platform they
use.

Latency variation can occur in traditional OTT delivery because players may have different
strategies to address the start of the session. As shown in Figure 3, a user hits the play
button during a segment having several key frames. These different player strategies to

start the playback can produce a latency variation in the range of a segment duration
(typically six to 10 seconds):

• The player can download “segment i” and start to display the content starting
from beginning of this segment

• The player can download “segment i,” parse it and start to display the content
beginning from the closest key frame in the past, which compared with the
previous approach can provide a latency short by a fraction of a segment
duration

• The player can also decide to wait until the new segment is available to start
downloading and displaying it

Segment i Segment i+1

Key frame (IDR)

User ‘’play’’
action

Figure 3 - Session start in regular OTT

The CMAF Low-Latency Tools to Ease Player Synchronization

The CMAF standard was developed to create a common solution for the media files
delivered using HLS and DASH, but it also considered the more recent needs to deliver
live OTT services with a latency about the same as broadcast. For that purpose, a set of
tools and recommended practices have been described to simplify and help the player to
master this low-latency requirement.

Compared with some of the distributed synchronization approaches mentioned previously
in this paper, the synchronization enabled by using a low-latency CMAF approach is a
server-side client method. Using newly available elements at the media level, namely the
CMAF chunks and with the new “service description” element in the DASH manifest and a
hint in the manifest and playlist, both HLS and DASH standards have well-documented
elements to anchor the players to an absolute time (UTC timing).

For regular latency services (not based on LL CMAF) players were most likely in best
effort mode with regards to stream latency, as described above. However, the low-latency
services mandate some elements to give the service provider control over the overall
latency for any standard compliant player. As the server-to-client latency is well under
control with good precision, the client-to-client relative latency, which is the key element for
Watch Together applications, is also naturally well controlled.

Looking at the details, the solution for low-latency services is a bit different between HLS
and DASH, but both are based on some common rules:

• Both make use of a timeline to announce the availability of segments.

• Both use CMAF chunks, which can be seen as smaller entities (usually smaller
than one second in duration) inside a segment.

• Both have tools to drive exactly the media presentation time, thus not letting the
player decide on its buffer level.

• The target overall latency can be defined by the service provider to make sure
that whatever the network conditions are all the players will be aligned.

Segments built in compliance with CMAF standards and using CMAF chunk elements can
be common, but the manifest and playlist have different elements to signal timing-related
information.

The DASH solution is described in the DASH Industry Forum Guidelines (6) and its low-
latency extension (7). A new element called “service description” combined with a
mandated “producer reference time” information to be set either in the media file (prtf box)
or in the manifest gives the unambiguous timing anchors for the segments:

• The “service description” is a new element present in the manifest, giving
among other information a target latency (as well as min/max boundaries) for
the service. This target latency has to be followed by the player if the value is
compatible with what the delivery network can do. It’s operator’s decision to set
a more or less aggressive target based on their knowledge of the targeted
device and networks.

• “Producer reference time” information gives the actual time when the content
has been either produced or presented at the final ABR encoder input.

With that, a compliant low-latency DASH player can combine the “producer reference time”
for a given frame with the target latency to know exactly when this frame should be
displayed.

The HLS solution for low latency is based on a different approach to distribute the CMAF
chunks, but it also provides a very precise media timeline indication. The part files
availabilities are provided directly in the playlist, and the #EXT-X-PROGRAM-DATE-TIME:
Tag provides wall clock information of when the first frame of the following segment in the
playlist was, for example, entered into the encoder. This information is close to the
“producer reference time” mentioned in the DASH specification and can therefore be the
exact value of the prtf box contained in the segment.

The PART-HOLD-BACK Tag gives, in a low-latency playback mode, the closest position
compared with the live edge (given by the last element in the playlist) where the client can
play. This tag can, in combination with EXT-X-PROGRAM-DATE-TIME, determine the
target latency the operator has set for the service.

Tests Results

Figure 4 illustrates what can be achieved with a low-latency service delivered with HLS or
DASH.

• The desktop player at the top, running on a Chrome browser, is a Dash.js-
based player where target latency has been set to 6.5 seconds (DASH stream).

• The player at the bottom left is an Android Exoplayer-based player, running on
a Galaxy S6 tablet, playing the same LL DASH stream.

• The player at the bottom right is an HLS player using AVPlayer running on an
iPad Pro.

As this can be observed, the three players are in-sync together with an accuracy better
than 100 ms. There is no synchronization protocol or interaction between the player except
the information contained on the streams.

Figure 4 - Latencies on different players

The test above was made with collocated devices but the same kind of tests can be
made with geographically distributed devices. Similar experiences with players running
HLS or DASH streams, one in Europe and other in the U.S., didn’t reveal any
noticeable difference in latencies (below a second).

These initial results confirm what low-latency CMAF-based DASH and HLS extensions
can provide and show that there is a simple way to provide a Watch Together
application for live sport events, for example.

CONCLUSIONS

This paper presented a new approach to guaranteeing proper synchronization between
the users of a Watch Together session, using the available tools provided by low-latency
HLS and DASH, based on CMAF.

We believe this approach has many advantages for sports event coverage, as these
events offer a much better user experience when delivered in low latency. Indeed, this is a
fully standardized approach that any player compliant with the low-latency extensions of
DASH or HLS can support. By using the time anchor elements, any player, anywhere, will
display the same content (same point in time in the media timeline), with an accuracy that
can easily be below one second, thus avoiding the need for any client-specified adaption.
We believe that creating a Watch Together application is simplified with a focus made on
the user interaction capabilities more than lower lever inter-player video synchronization.
In addition, no computing power is required on the server side as opposed to a client-
based solution.

Moreover, using the low-latency HLS or DASH standard makes the end-to-end latency on
par with the broadcast stream, in the range of about five to seven seconds behind live,
which is highly valued by OTT service providers streaming sports events.

Watch Together applications are still in their early days and will move progressively from
fully proprietary solutions to more feature-rich, standard-based solutions. Lower-level
signal synchronization can be achieved thanks to CMAF low-latency delivery and free the
development resources for UX improvements and enable a better user experience, which
should be the differentiating factor for any of the next-generation immersive applications.

REFERENCES

1. “Co-Watching: Creating the Power of Togetherness,” https://www.sportsilab.com/cowatch-ppi

2. ISO/IEC 23000-19:2020, Information Technology — Multimedia application format (MPEG-A)
— Part 19: Common media application format (CMAF) for segmented media,
https://www.iso.org/standard/79106.html.

3. ISO/IEC 23009-1:2019, Information Technology — Dynamic Adaptive Streaming Over HTTP
(DASH) — Part 1: Media Presentation Description and Segment Formats (4th Edition),
https://www.iso.org/standard/79329.html

4. HTTP Live Streaming 2nd Edition draft-pantos-hls-rfc8216bis-08.
https://datatracker.ietf.org/doc/draft-pantos-hls-rfc8216bis/

5. WebRTC, https://webrtc.org/

6. Guidelines for Implementation: DASH-IF Interoperability Points V4.3: https://dash-industry-
forum.github.io/docs/DASH-IF-IOP-v4.3.pdf

7. Low-Latency Modes for DASH : https://dash-industry-forum.github.io/docs/CR-Low-Latency-
Live-r8.pdf

https://www.sportsilab.com/cowatch-ppi
https://www.iso.org/standard/79106.html
https://www.iso.org/standard/79329.html
https://datatracker.ietf.org/doc/draft-pantos-hls-rfc8216bis/
https://webrtc.org/
https://dash-industry-forum.github.io/docs/DASH-IF-IOP-v4.3.pdf
https://dash-industry-forum.github.io/docs/DASH-IF-IOP-v4.3.pdf
https://dash-industry-forum.github.io/docs/CR-Low-Latency-Live-r8.pdf
https://dash-industry-forum.github.io/docs/CR-Low-Latency-Live-r8.pdf

ACKNOWLEDGEMENTS

The following individuals are acknowledged for their contributions to the paper: Thierry
Fautier at Harmonic for encouraging me to write this paper and providing a review.

