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ABSTRACT 

Keeping broadcast IP network latency low is critical in maintaining the 
immersive viewing experience, especially when delivering high quality 
broadcast media over the Internet or broadcast IP datacentres. The 
network and resource requirements of heavy-hitting broadcast media 
flows with high datarates and temporal longevity clash with the needs of 
latency sensitive short data flows, leading to switch buffer overload and 
network congestion resulting in dropped packets and increased latency 
due to TCP-RTOs (Transmission Control Protocol Retransmission Time-
Out). Within broadcast datacentres the media flows often fall under 
elephant flow (EF) classification, with the short flows being classified as 
mice flows (MF). Rapid and early detection of EFs will allow the SDN 
controller to re-route them and reduce their impact on the MFs within the 
broadcast IP network. This reduces packet dropout so that the TCP-
RTOs are not triggered resulting in latency being kept low and the 
immersive viewing experience being improved. Although EF detection 
has been researched extensively, this paper proposes a new approach 
to detect EFs for the broadcast network SDN controller within 500ms, 
thus allowing the SDN controller to re-route the EFs and reduce packet 
loss. This method uses machine learning with ensemble LSTM (Long 
Short-Term Memory) neural networks, with each LSTM being a different 
length so the ensemble can capture the non-linear characteristics of the 
varying flow sizes. The ensemble LSTM outputs are then concatenated 
and further processed by a neural network. Training is achieved by back 
propagating through the neural network and then each LSTM resulting in 
a greater inference EF detection accuracy for the broadcast IP network. 
Our approach was tested on industry standard datasets and achieved EF 
detection in under 500ms without needing to be reliant on statistical 
information provided by network switches thus further reducing latency 
and improving the immersive viewing experience, unlike other 
approaches.  

 

INTRODUCTION 

As Internet Protocol (IP) packets are distributed asynchronously and randomly, there will be 
statistical peaks and troughs in the number of packets available in the network at any time. 
While IP packet loss is inherent within networks, Transmission Control Protocol (TCP) 
provides reliable IP packet delivery. Still, it does this at the expense of latency as it is 



           

 

connection-oriented between the client and server and relies on resend strategies to account 
for lost packets [2]. A client initiating a connection will wait for the server to acknowledge the 
request, after which the client sends the IP packets associated with the media being 
delivered. When all the data is sent, the client will close the connection.  

TCP is used extensively for streaming video, audio, and metadata to viewers on their smart 
TVs and mobile devices. Consequently, the prevalence of TCP flows continues to grow 
significantly resulting in a greater number of EFs that need dynamic re-routing to reduce the 
risk of latency for viewers, especially when viewers exchange social media messages. 
Furthermore, as broadcast IP network infrastructures increase in complexity, which is 
inevitable if IP is going to deliver the flexibility it promises, then the prevalence of TCP cannot 
be ignored especially when broadcasters integrate uncompressed UDP streams, such as 
ST2110, with compressed TCP video and audio streams. 

Elephant TCP flows tend to be temporarily long and fill up buffers within switches due to 
their high and steady data rates, especially when egress ports are heavily subscribed, and 
if most of the buffers are dedicated to these ‘high steady states’ then this can lead to packet 
loss for short packet bursts, resulting in increased latency and a poor user experience. Hash 
based ECMP (Equal Cost Multipathing) is often employed in networks to choose the shortest 
path for routing as it is simple to implement and doesn’t require per-flow information from 
the switches. ECMP is unable to differentiate between MFs and EFs and suffers from hash 
collisions sometimes resulting in multiple EFs being mistakenly sent across the same link, 
thus further exasperating buffer overflow and packet loss [37]. Therefore, there is a need to 
remove congestion on heavily subscribed egress ports and reduce the risk of holding back 
MFs that are short-lived, and time-sensitive [1]. To resolve this, Liu [6] proposed a load 
balancing mechanism based on SDNs for routing EFs by gaining the topology and status of 
the entire network. They then split and send EFs through multiple paths based on the 
parameters of the states of the links. However, for SDN re-routing to be effective, EF 
detection must be as fast as possible; this is what our work proposes. Unlike other methods 
that require many seconds of TCP flow data to establish an EF, our method achieves EF 
detection in less than 500ms. This reduces the risk of buffer overflow and hence packet 
drop, resulting in an improved immersive viewing experience. 

 

Fig. 1. Congestion and packet loss can 
occur between TOR0 (Top of Rack) and the 
core switch (Core0) when device S0 is 
sending short bursts of MFs and S1 is 
sending EFs 

 

Fig. 2. A solution where TOR0 routes the 
traffic from device S1 via core switch Core1. 
However, TOR0 must detect the EF early. 

Data centre measurements [22] [23] have shown that 80% of the total flows within the 
network are less than a few milliseconds long and less than 10KB in size. The majority of 



           

 

traffic volume is represented in the top 10% of large flows (EFs), and any significant 
bandwidth traffic (e.g greater than 1MBps) is often considered an EF [26]. Any competition 
between MFs and EFs for network resources often results in MFs being starved of bandwidth 
which often leads to dropped packets and increased latency [25]. Furthermore, re-routing 
the EFs to allow MFs greater bandwidth can potentially improve the network throughput [24]. 
The SDN controller does not need to process all EFs, only those that significantly impact the 
network performance. Inefficient management will fill network buffers with EFs, thus leading 
to queuing delays and dropped packets. Consequently, rapid EF detection is essential to 
reducing network congestion [27].  

Figure 1 demonstrates how EF detection can be used to stop EF and MF conflicts by 
dynamically re-routing EFs. However, early EF detection is essential to reduce the risk of 
the switch buffers overflowing. Buffers that overflow will drop packets which in turn will lead 
to massively increased latency in TCP flows. 

EF detection might appear relatively trivial as a network operator could argue that any TCP 
flow below a threshold of 250ms (for example) is a MF, and anything greater is an EF. 
However, only the EFs that significantly impact the network performance need to be re-
routed, that is, EFs that are greater than 10s [28], and waiting for 10s to detect an EF is not 
viable in real world networks. Hence, our proposal can detect an EF in less than 500ms and 
therefore classify a TCP flow as either a MF or EF in under 500ms.  

Several methods of EF detection techniques have been previously proposed [24], [25], [29]–
[35]. However, they rely on short flow thresholds in the switch, which can lead to high rates 
of false positives and negatives. Some methods require periodic extraction of the flow 
statistics [24], [25], [33], [34] from the network switches to the SDN controller, which in itself 
may increase network traffic, thus contributing to congestion. This further leads to a 
significant increase in flow detection and re-routing latency.  

Therefore, we propose a more nuanced data driven approach with the following key 
contributions:  

• The tokenisation of the TCP data streams into 10ms bins enables machine learning 
approaches to model the continuous flow data.  

• The introduction of a data driven temporal time prediction model, using an ensemble 
model of LSTMs (Long Short- Term Memory) layers to capture both short- and long-
term temporal information about the data flow and classify a TCP stream as either a 
MF or EF, with low computational overhead. 

• Extensive testing of the proposed method on the industry standard CAIDA [8].  

RELATED WORK 

EF definitions can be based on three methods of detection: flow duration, flow data rate, 
and a combination of flow duration and data rate. Estan [3] uses a method of detection by 
calculating the flow datarate as a percentage of the overall data rate during a given measure 
(1 second, 1 minute or 1 hour), and those exceeding a threshold of 0.1% are classified as 
EFs. Lan [4] uses the datarate method and defines EFs as flows with a datarate larger than 
xKB/sec. Papagiannaki [5] uses a combined method of deriving a moving average of a 
datarate during a given measure and determining the length of the flow duration. The third 
standard deviation of the average flow duration forms the threshold along with the data rate. 



           

 

Chao [18] uses a machine learning method called Stream Mining based on the Hoeffding 
Tree [19]. This operates on a continuous data stream using the labelled CAIDA dataset. 
Their labelled set classifies an elephant for all TCP flows greater than 5000ms and average 
data rate greater than 50MB/s. We present our EF detection by comparing our results to 
Chao [18] and determine that the ensemble LSTM detects EFs with the same accuracy as 
Chao but in half the time. This is important for SDN networks as the controller’s response 
time is significantly improved, leading to much faster re-routing of long TCP EFs.  

To predict temporal sequences, RNNs and their variants, including LSTMs [9] and Gated 
Recurrent Units [10] have shown to learn and generalise the properties of temporal data 
sequences successfully. Graves [11] was able to predict isolated handwriting sequences, 
Alahi [12] was also able to predict human trajectories of crowds by modelling each human 
with an LSTM and jointly predicting the paths. More recently, researchers turned their 
attention to the transformer architecture [14] that has proven to excel in sequence pre- 
diction in NLP tasks. In computer networking, LSTMs are used for various network 
management and optimisation techniques, including network traffic modelling [15]. This 
enables better load balancing, traffic engineering, and performance diagnostics. Li [16] 
provides a method of detecting Distributed Denial of Service (DDoS) attacks by combining 
LSTMs and Bayes methods. Furthermore, Dey [17] provides an anomaly detection solution 
that detects any breaches of the control plane within software defined networks.  

METHOD 

We propose a data driven architecture; a neural network formed of LSTM layers that can 
identify patterns within processed TCP sequence data to classify EFs as shown in Figure 3. 
We tokenise the TCP data stream into a discrete set of bins; this vector of quantise TCP 
data is used to train a temporal prediction model via an ensemble of LSTM layers. An LSTM 
can learn information about temporal input data within a defined temporal window, and using 
several LSTMs in parallel allows for multiple window lengths of the tokenised TCP flow data 
to be analysed. This captures both short- and long-term temporal information about the TCP 
packets. The results of the ensemble streams are then concatenated via a further multi-
Layer MLP and a softmax to convert the vector into a two hot vector, which is then classified 
into a MF or EF.  

Fig. 3. An overview of the approach. 
 



           

 

Input data Packet Tokenisation  

The initial stage is to process the raw data into defined TCP flows. The IP packets are 
extracted from the raw network data. The packets are then decoded into TCP flows into a 
tuple with the following defined specification - [ip src, ip dst, port src, port dst], where ip src 
is the IP packet source address, ip dst is the IP packet destination address, port src is the 
TCP port source address, port dst is the TCP port destination address.  

Each flow is unique and has a start and end sequence. To tokenise the data, the number of 
bytes in the IP packets associated with each flow are aggregated into defined size bins (x), 
each of 10ms in size for this work. Each bin contains the accumulated data for the TCP flow 
identified in the associated record. Each of these bins provides the average data rate for the 
flow at 10ms intervals. Therefore, for a given TCP flow, X, with the total sequence length of 

n, the TCP flow consists of the n bins, X = {x0, x1, x2, ..., xn−1}. Then the full extracted set 

of TCP flows X can be represented by X = {X (0), X (1), ..., X (n−1)}. This tokenisation of the 
raw data into discrete bins enables temporal sequence prediction via multiple LSTM layers 
to learn the relationship between EF and MF TCP flows.  

Tokenisation further improves EF detection as the temporal element of the data packets is 
implied within each bin, and the robustness of the measurement is maintained. The amount 
of router resources needed to collate the data is small compared to collating and 
communicating detailed information, such as timestamps, to the SDN controller. 
Furthermore, the network traffic to communicate the aggregated data bins to the SDN 
controller is also reduced.  

LSTM Machine Learning Layer  

Given the temporal nature of TCP packet information represented in the tokenised data, it 
is desirable to learn and identify the rich temporal patterns between flows to classify EFs 
and MFs. Long Short-Term Memory (LSTM) layers [9] have provided excellent performance 
in exploiting longer term temporal correlations compared to standard recurrent neural 
networks on many tasks. LSTM layers can store and access information over long periods 
but mitigate the vanishing gradient problem common in RNNs through a specialised gating 
mechanism.  

Given an input vector Ji(t) at time t consisting of binned packet data and resulting output 

joint vector J
o
(t). The aim is to learn the function that minimises the loss between the input 

vector and the output vector J
o = ot ◦ tanh(ct) (where ◦ denotes the Hadamard product), ot is 

the output gate, and ct is the memory cell. A combination of the previous memory ct−1 

multiplied by a forget-gate. Thus, intuitively, it combines the previous memory and the new 
input. For example, the old memory could be completely ignored (forget gate all 0’s) or 
completely ignore the newly computed state (input gate all 0’s), but in practice, it is between 
those two extremes.  

LSTM Sequencing  

It is possible to treat packets with their timestamps as individual data points and present 
these to the model; however, we concluded that the data rate of the reporting traffic from the 



           

 

router to the SDN controller would be excessive. Our solution, a data driven temporal time 
prediction model, has led to the adoption of time bins. Aggregating the packets into 10ms 
time bins maintains the accuracy of the data packet size information, keeps an element of 
the timing information, and keeps network traffic low between the router and SDN controller.  

To establish the relationships between packets and hence detect EFs in the least possible 
time, each time bin forms part of a unique temporal sequence presented to each layer of the 
LSTM. These sequence lengths relate directly to the time taken to detect an EF and vary in 
length to enable a greater detection granularity. A short sequence length consisting of five 
10ms time bins will detect short-term TCP flow activity, which could well be MFs, and hence 
would discount them from the final classification. Nevertheless, it is equally possible that 
specific EFs could burst quickly in the first 50ms, and the five-bin sequence layer of the 
model would train and detect these. The maximum sequence length is 50, representing 
500ms (10ms · 50). By choosing different sequence lengths, data patterns representing the 
characteristics of EF data rates and time can be better detected.  

Ensemble LSTM Method  

The LSTM is particularly well suited for determining patterns in sequences. However, the 
size of the window of sequences it can sample is fixed, leading it to potentially learning 
patterns associated with a specific sequence length. Therefore, to expand and model over 
a range of window sequence sizes, inspired by [7], we propose to use multiple LSTMs with 
different sequence sizes and combine their outputs to enable both a short- and long-term 
temporal model to be created.  

Figure 4 illustrates the proposed architecture, where there is a set of parallel LSTM layers, 
where each LSTM has its unique sequence or window length, the outputs are a fixed size 
and are concatenated via an MLP layer; this, in turn, provides the detection output.  

Fig. 4. Ensemble LSTM block diagram showing the configuration of the individual LSTM 
modules concatenated via an MLP 

By varying the sequence length for each LSTM and the hyperparameters, such as learning 
rate and hidden layer size, the model can learn the hyperparameters to model relationships 
over a range of window sizes to improve the detection accuracy of EFs. The sequence length 
aims to be as low as possible because this research aims to provide a method of detecting 
EFs in the shortest time possible. Given k possible sequence windows (for this work, the 
windows are 5,20,35,50 tokens), it is possible to create an ensemble of parallel LSTM layers 
concatenated into a single vector R which can then be classified using the softmax layer into 
EFs and MFs. 

  



           

 

Implementation Details 

The model was written in python using the PyTorch library, uses the adam optimiser, and a 
learning rate of 0.001. It is trained on a single RTX5000 GPU and takes around 6 hours to 
train. Inference took less than 1ms, which could easily be facilitated on a low power GPU 
such as the Nvidia TX2 module edge device. Consequently, an EF detection is processed 
and reported to the SDN controller in just over 500ms from the start of the TCP flow. We 
propose that the EF detection modules be placed at the input to the edge switches within 
the network and report any EFs to the SDN controller directly. This reduces the switches 
and SDN controller’s processing overhead and provides accurate and rapid EF detection. 
There is no processing overhead in the switch or SDN controller. The proposed LSTM model 
does not store any data points as it processes each flow as a sequence of time bins; 
consequently, the inference, and hence detection time is fixed and doesn’t vary as a function 
of the number of flows within the stream as in Hamdan [36].  

Practical Example 

A broadcast use-case solution is demonstrated in Figure 5 showing a REMI type 
configuration. The vision engineer resides in the studio and controls the shading and iris 
functions of the remote camera located at the OB, and a camera operator resides at the OB 
to pan, tilt, focus and zoom the camera. If the video and control data are routed over the 
same network, even if a CDN is engaged, there is a high probability that the time sensitive 
OCP control data will be delayed and subject to variable and undesirable latency due to the 
dominance of the video and audio streams (EFs) in the CDN, especially when multiple 
cameras are employed. This will result in the shading and iris control functions being 
compromised as the vision engineer will experience poor adjustment over the iris and colour 
balance; the camera video will be intermittently over- and under-exposed, and over- and 
under-colour corrected resulting in a poor viewing experience. By automatically detecting 
the long EFs (video and audio) and routing them over a CDN, the OCP data and other time 
sensitive data can then be routed over a separate CDN, thus improving the accuracy of the 
OCP control for the vision engineer resulting in consistently accurately exposed and colour 
corrected high quality images which in turn will deliver an improved viewing experience. 

 

Fig 5. A REMI type studio and OB configuration with the vision engineer shading the 
cameras from the studio, and the camera operator positioning and framing the camera at 
the OB.  



           

 

EXPERIMENTS 

To evaluate our approach, we use the standard CAIDA dataset [8] and provide several 
baseline comparison methods verified via defined metrics.  

Dataset Pre-processing  

The CAIDA dataset [8] was chosen as it provides a continuous data centre layer-2 stream 
recording of six hours of data, thus providing many opportunities for long EFs to establish 
themselves. The accurate detection was possible for EFs and MFs during pre-processing to 
provide detailed training and test datasets, where an EF is defined following the method of 
Chao [18]. The dataset consists of 300,908 MFs, and 33,434 EFs, giving the ratio of the 
number of mice to EFs as 90:10. However, the data rate of MFs to EFs is 31:69, showing 
that 69% of the data are from EFs are responsible for 10% of the number of TCP flows.  

To reduce the risk of overfitting during training, the dataset was balanced with a MF to EF 
ratio of 50:50. A random subsample of MFs was used to match the number of EFs and 
provide 33,434 MFs, with a total of 66,868 flows in the dataset.  

Test Metrics 

We use several standard metrics to evaluate the performance of our proposed approach, 
precision, recall, f-measure, MCC, and Mean Absolute Percentage Error. F-measure is a 
measure of classification accuracy. Mean absolute percentage error (MAPE) is a measure 
of how accurate a prediction system is and measures the accuracy as a percentage. 
Mathews Correlation Coefficient (MCC) takes into consideration all four measures (true 
positive, true negative, false positive and false negative) within the binary classification of 
the confusion matrix to provide a value within the range +1 and −1. Value +1 is 100% 
correlated and −1 is 100% uncorrelated.  

Baseline Methods 

Three methods were chosen to baseline our proposed EF detection model against: 
Gudibanda [20], Mohammed [21] and Chao [18]. Gudibanda [20] uses the Gaussian Naive 
Bayes method to make the assumption of conditional independence between every pair of 
features for the class. This method does assume all the features are independent, and this 
may well not be the case due to the cyclical nature of TCP flows. Mohammed [21] reviews 
and proposes Linear Regression, which assumes the detection fits a constant slope. 
Although this model is predominantly used to predict continuous variables, it was used in 
these tests to determine if the relationship between the features and the detection was easily 
predictable. Chao [18] uses a Hoeffding Tree [19] which is a data driven method that uses 
an incremental decision tree.  

Results 

Table 1 shows the proposed ensemble method LSTM-4 compared to the baselines 
predicting EFs and MFs using the first 500ms of the TCP flows from the CAIDA datasets.  

Table 1 shows that Chao’s method provides the closest performance to our proposed 
approach. In contrast, the others perform poorly with the limited amount of data provided 



           

 

with the 500ms across two standard metrics. The Bayesian method with a MAPE of 0.11 
and f-measure of only 0.56 is demonstrating a near random outcome. And the Linear 
Regression is similar, this further indicates that the solution is non-linear and too complex 
for the Linear Regression method to work effectively.  

 

Table 1 – Performance of the proposed method against baselines for EF detection using 
the first 500ms of TCP flows 

CONCLUSION  

The results have demonstrated that the proposed data driven ensemble of LSTM layers 
provides consistently better results for short term EF detection than the other methods 
considered. The speed with which detection can be achieved will reduce the possibility of 
buffer overflow and packet loss in the network switches thus allowing network operators to 
improve load balancing and reduce latency, especially for time sensitive events.  

For broadcasters this will further improve the immersive viewing experience as there will be 
fewer dropped packets as heavy hitting media TCP EFs will be rapidly detected and then 
re-routed using SDNs to improve network optimisation and data throughput. Furthermore, 
the computational overhead on the switches and SDN is very low. 

To improve the metrics, and hence EF detection speed, future work will explore reducing 
the token time length to be lower than 10ms. This should increase the number of tokens 
available to the LSTMs, which will improve the detection accuracy and hence improve the 
metrics, although there is the potential for over-fitting.  

The four LSTM ensemble has achieved the required result by predicting EFs with an f-
measure metric of 0.89 within 500ms.  

As broadcasters continue to optimise IP systems to provide the flexibility and scalability that 
IP promises, then network engineers are going to need to consider more efficient and 
dynamic methods of traffic management, especially when considering media flows. Our 
method improves EF detection times so that SDNs can efficiently route heavy hitting media 
flows to reduce buffer overflow and packet loss, hence further improving the immersive 
viewing experience. 
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