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ABSTRACT 

A QUIC-based low-latency delivery solution for media ingest and distribution 
in browser and non-browser environments is currently being developed for 
various use cases such as live streaming, cloud gaming, remote desktop, 
videoconferencing and eSports. Operating in an HTTP/3 environment (i.e., 
using WebTransport in browsers) or using raw QUIC transport, QUIC has 
the potential to revolutionize the media industry overcoming the limitations 
we face with the traditional approaches that impose TCP. This study 
explains the design methodology and explores possible gains with QUIC’s 
stream prioritization features. 

INTRODUCTION 

Live sports broadcasting, where fans can stream live content on their connected devices or 
cloud gaming, where users can play together connecting from different parts of the world, 
has many demanding requirements. Nobody wants to hear a neighbor’s cheers when a goal 
is scored before seeing it on the screen, making low-latency transport and playback 
indispensable. Similarly, high latency is intolerable when playing games in the cloud. 

The existing HTTP ecosystem comprises solid foundational components such as distributed 
caches, efficient client applications and high-performant server software glued with HTTP. 
This formation allows efficient live media delivery at scale. However, the two popular 
approaches, DASH and HLS, are highly tuned for HTTP/1.1 and 2 running on top of TCP [1, 
2]. The downside is the latency caused by the head-of-line (HoL) blocking experienced due 
to TCP’s in-order and reliable delivery. The latest version of HTTP (HTTP/3) uses QUIC 
underneath instead of TCP. QUIC can carry different media types or parts in different 
streams. These streams can be multiplexed over a single connection avoiding the HoL 
blocking [1, 3]. The streams can also be prioritized (or even discarded) based on specific 
media properties (e.g., dependency structure and presentation timestamp) to trade off 
reliability with latency. DASH and HLS can readily run over HTTP/3, but they can only recoup 
the benefits if they use its unique features [6]. 

In the IETF, a new working group, Media over QUIC (MOQ), was formed in 2022 to study 
further the possible enhancements that QUIC may bring for low-latency live streaming [5]. 
The initial implementation of MOQ Transport (MOQT) is discussed during the IETF 
meetings, which is on its way to standardization [7]. As the initial discussions reveal, MOQT 
may improve the scalability of real-time, interactive media applications and the interactivity 
of live streaming applications. 

This paper explains the MOQT design considerations and summarizes the enhancements 
we implemented in a previous study [8, 9]. Then, we investigate the prioritization schemes 



  

         

 

that can be performed over this first implementation and show results for the on-time-display 
ratio under different bandwidth constraints. 

MOQT DESIGN METHODOLOGY 

MOQT offers a latency-configurable delivery protocol for transmitting content from one or 
more senders to the receiver(s) over zero or more relays utilizing either WebTransport (in 
browsers) or raw QUIC (otherwise), as shown in Figure 1.  

Relays scale media delivery by forwarding incoming media to one or more relays or 
receivers without requiring a unique encoding for every recipient. In order to adapt to 
congestion and meet the application’s latency requirements, relays choose what to deliver 
in what order or what to drop, depending on the particular metadata disclosed in the 
envelope of the incoming packets. Receivers can also compromise on quality and latency 
by determining the ideal time to wait for media, depending on their network conditions and 
user expectations. 

 

Figure 1: Simplified end-to-end deployment of MOQ. 

The server side of the first MOQT demo (initially named Warp1) makes use of a customized 
quic-go2 library with features like stream prioritization and APIs that expose the bandwidth 
and QUIC connection [10]. The server mimics live streaming by releasing a pre-encoded 
and pre-packaged media file chunk by chunk as soon as a client connects. In this 
implementation, each media frame is packaged as a CMAF chunk using the Common Media 
Application Format (CMAF, ISO/IEC 23000-19 [4]) standard.  

The client application is a Web page that plays the live feed and includes a video element 
and establishes a connection to the server using the WebTransport API after the page has 
loaded and begins to receive QUIC streams. The CMAF segments are parsed and 
appended to the source buffer as they are received. The client uses a unidirectional, single 
QUIC stream to send the server control messages (such as play, pause and resume). 

Enhancements to MOQT Demo  

The first MOQT demo provided the necessary elements, but numerous others were required 
for a complete study. The improvements we made to create a testbed for experimenting with 
MOQT proposals are outlined below [9] and can be reached at [11]: 

● addition of data keys under server-to-client informational messages to calculate end-
to-end latency on the client side and throughput estimation on the server side, 

● wall-clock time synchronization between the server and client, 

 
1 https://tinyurl.com/initial-warp-demo 
2 https://github.com/kixelated/quic-go 
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● addition of client-to-server control messages for transmitting client preferences to the 
server, 

● addition of passive and active bandwidth measurement methods, and  
● enhanced user interface to compare the real-time bandwidth measurements on both 

sides. 

Prioritization Schemes 

Prioritization is an important feature yet to be studied by the IETF MOQ working group. The 
network usually cannot maintain the intended order for media content – the order to decode 
the material and play it. Due to several reasons, a receiver cannot expect packets to be 
received in the order they were sent. The sending of specific streams may be delayed by 
packet loss or flow control.  

Latency budget is the maximum acceptable delay between when a media unit is generated 
and when it will be consumed in a given application. The latency budget allows a client to 
buffer and re-order the incoming and possibly out-of-order packets for decoding. This, in 
turn, smooths the viewer experience by avoiding frame drops and increasing the on-time-
display ratio (of the frames). 

The ideal latency budget differs from application to application. For instance, the quality of 
experience is directly tied to the end-to-end latency for live sports. Therefore, a lower latency 
budget should be used for applications requiring low-latency delivery. Aiming for high-quality 
streaming using a small latency budget is a challenging task. It requires careful planning of 
each step in the streaming process, from encoding to transmission to decoding. Each step’s 
small latency gain helps keep the latency budget low. Using a tool such as prioritization can 
make a difference.  

Developing effective prioritization techniques for different types of applications is possible 
with MOQT. For low-latency live streaming, an approach may be to group I and P-frames 
with a higher priority than B-frames. For non-low-latency live streaming, high-resolution 
frames can be prioritized over low-resolution frames. Prioritization should not be limited to 
just the type of frames. For example, a user can also be given the option to choose to 
prioritize low latency over high quality or vice versa. 

The current MOQT draft [7] describes two prioritization options (Send Order and Ordering 
with Priorities) and, in this study, we explore and compare the following two schemes. 

Implicit Prioritization 

The video frames are transmitted without specific prioritization in the delivery process. A 
single unidirectional QUIC stream is used to deliver the frames, and their send order is the 
same as their encoding order. This Implicit Prioritization is also called First Encode, First 
Send (FEFS). The delivery order is the same as the send order because QUIC guarantees 
the delivery order for the objects sent over the same stream, as illustrated in Figure 2. 
Nonetheless, in cases where there is congestion on the link or not enough available 
bandwidth to send all the frames (e.g., see Figure 3), queueing will occur and later frames 
will experience an increased delay. 

 

 



  

         

 

 

Figure 2: Illustration of implicit prioritization without congestion. 

 

Figure 3: Illustration of implicit prioritization with congestion. 

Prioritization by Frame Type  

The video frames are prioritized according to their types (e.g., I, P and B). For each frame 
type, a separate unidirectional QUIC stream is created, and each stream is assigned a 
priority based on that type (as illustrated on the left in Figure 4), where the I-frames and B-
frames have the highest and lowest priority, respectively. This way, it is expected that in a 
congested network, the timely delivery of I-frames is more likely than that of P and B-frames. 
The timely delivery of P-frames is also more likely than that of B-frames (as illustrated on 
the right in Figure 4). 

  

 

Figure 4: Illustration of prioritization by frame type. 

EXPERIMENTS AND RESULTS 

Experimental Setup 

We ran several experiments with different configurations to compare the prioritization 
schemes. These experiments were conducted on a computer with an Intel Core i7-8750H 
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CPU (6 cores, 12 threads) and 32 GB of RAM, running Ubuntu 22.04.2 LTS with a kernel 
version 5.15.0. Node.JS and NPM versions were 18.13 and 9.3.1, respectively. The Go 
runtime version was 1.19.5. As the browser, Chrome 113.0.5672.63 was used to run the 
MOQT demo. For network emulation (e.g., applying a bandwidth constraint), tc NetEm3 was 
used. 

We used a pre-encoded (1280x720) test video to simulate live streaming. It was displayed 
for approximately two minutes in each experiment. The frame rate was 25 fps and the group-
of-pictures (GoP) length was 50 frames (two seconds). Each frame was packaged into a 
CMAF chunk and each GoP was packaged into a CMAF fragment. The GoP structure was 
a sequence of frames where two B-frames were interleaved between the I and P-frames 
(i.e., IBBPBBP…). 

The bitrate of the test video with the associated overheads was approximately 2.7 Mbps. 
Therefore, the frame latency variations were measured at three different bandwidth 
constraints: 2.7, 2.85 and 3 Mbps. 

Performance Metrics 

The metrics to evaluate the effectiveness of the prioritization are (i) latency variation 
depending on the bandwidth constraint, and (ii) the on-time-display ratio (OTDR) under 
different latency budgets. OTDR indicates the ratio of the number of frames displayed on 
time over the total number.  

In multimedia applications, not all the received frames are necessarily displayed on time. A 
P-frame can be displayed only if the I-frame and any other preceding P-frame have been 
received. Similarly, B-frames can be displayed only if the referenced I and P-frames have 
been received.  

When determining whether a frame is displayed on time, it is checked whether the frame(s) 
it depends on are received and decodable by this frame’s presentation deadline. The 
methodology is summarized in the flowchart given in Figure 5. 

 

Figure 5: Calculation of the on-time-display ratio (OTDR) metric. 

Results 

In the tests, we measured the latency for different frame types, which were prioritized 
differently. Figures 6, 7 and 8 present the individual latency values for the I, P and B-frames, 

 
3 https://man7.org/linux/man-pages/man8/tc-netem.8.html 
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respectively. First, while the results show a latency variation among the frames of any given 
type, the variation is smallest for the I-frames and largest for the B-frames. At the same time, 
the latency variation among the I and P-frames does not change between the scenarios of 
bandwidth being constrained to 2.7 Mbps vs. 3 Mbps. On the other hand, the latency 
variation for the B-frames increases substantially when the bandwidth is constrained more. 
These are expected as prioritization limits the impact of the network congestion and the 
amount of latency experienced. Figure 6 also shows that if the latency budget is 700 ms or 
more, all I-frames can be displayed on time. At this latency budget (700 ms), Figure 7 reveals 
that some P-frames will not be displayed on time and Figure 8 reveals that most B-frames 
will not be displayed on time.  

 

Figure 6: Latency variation for I-frames. 

 

Figure 7: Latency variation for P-frames. 
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Figure 8: Latency variation for B-frames. 

Figure 9 reveals the latency variation of all frame types when the bandwidth is constrained 
to 2.7 Mbps. We observe that latency values for the I and P-frames vary in a smaller range. 
In contrast, the variation for the B-frames is significantly larger. 

 

Figure 9: Latency variation for all frames at a bandwidth constraint of 2.7 Mbps. 

Figure 10 shows the OTDRs for different bandwidth constraints under a latency budget of 
up to 3000 ms. While calculating the OTDR (of all frames of all types), the main idea is to 
check whether any given frame is received and can be displayed within that latency budget. 
The dashed lines illustrate the OTDRs with implicit prioritization (First Encode, First Send – 
FEFS). The dashed lines also represent the OTDR performance if we had used a single 
TCP connection (rather than one QUIC stream in a single QUIC connection). On the other 
hand, the solid lines illustrate the OTDRs with prioritization by frame type (FT) (using three 
QUIC streams in a single QUIC connection). The results show that MOQT enables us to 
improve the OTDR performance through better prioritization under the same bandwidth 
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constraint. Said differently, the same OTDR performance can be achieved with lower latency 
budgets if we apply a better prioritization scheme. 

 

Figure 10: OTDR with FEFS and FT prioritization schemes. 

CONCLUDING REMARKS 

MOQT is currently under development and it potentially comes with many advantages. With 
the enhancements we implemented to MOQT, we can provide the client with better 
performance under the same resources. For low-latency use cases, prioritization always 
provides higher OTDRs, resulting in a better quality of experience or a fairer use of available 
resources. The next step in our research is to expand the testing to multi-client scenarios. 
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