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ABSTRACT 

Widespread adoption of High Dynamic Range (HDR) videos elevates the in-home 
experience of video consumption. However, displaying HDR video content can 
escalate the power consumption of the TVs to over 300W, a figure that is content-
dependent. Moreover, existing solutions adversely impact visual fidelity in the 
attempt to reduce power consumption. In response, this paper proposes a just 
noticeable difference model comprising regions of interest detection, luminous 
adaptation and spatial correction techniques to conserve power. The model also 
incorporates skin detection and visual information fidelity based optimization 
techniques to reduce the visual fidelity loss. Extensive experiments conducted on 
multiple modes of LCD and OLED TVs demonstrate significant savings achieving 
an average of 1-18% power reduction. The best performing variant of the proposed 
JND model can achieve an average power reduction of 41W and up to 69W with 
LCD cinema home mode. 

INTRODUCTION 

End-user Quality of Experience (QoE)  has increased dramatically in recent years with the 
introduction of High Dynamic Range (HDR) with high-resolution video formats such as Ultra 
High Definition (UHD) [1] [2]. As such, video streaming providers have shown great interest 
in delivering HDR services to customers. Consequently, the world has seen a rapid 
proliferation of advanced display devices such as televisions (TVs) and mobile phones 
supporting the new video technologies that elevate the in-home experience of video 
consumption. In this trend, Light Emitting Diode (LED) display technologies have flourished 
in the past decade, superseding traditional Liquid Crystal Displays (LCD)s with fluorescent 
backlights, owing to improvements in multiple aspects such as brightness, visual fidelity and 
power savings. Organic LED (OLED) displays, a variant of the LED technologies, are widely 
used within high-end consumer devices to provide enhanced image quality [3].  

HDR imaging delivers an increased range of luminance, colour gamut and contrast, which 
shows significant improvements over Standard Dynamic Range (SDR) formats [4] [5]. 
However, displaying HDR videos comes at an increased cost of power consumption despite 
the mitigation measures that OLED displays provide. Although standard average power 
consumption is expected to be around 120W, it may not apply to HDR videos. Power usage 
for displaying HDR videos is content-dependent and shows great variation from one video 
to another. Consequently, some, HDR video contents can escalate the power consumption 
to over 300W for certain video sequences.   

Literature in video compression often narrates the deployment of Just Noticeable Difference  
(JND) models [6] [7]. More often they are used in applications that require the exploitation 
of perceptual redundancy. In general, JND models inject contaminations to images and 
videos up to a limit where perceptual differences between the original and the contaminated 



           

 

are minimized.  The decomposition of the images plays a major role in a JND model in order 
to identify perceptual redundancy. In this context, various algorithms have been proposed 
in the past [8] [6] [9]. Importantly, the utilization of JND models has also been explored in 
the power reduction of displaying images and videos in OLED displays [10] [11]. 

The major drawback of existing solutions is the detrimental effect on the visual fidelity. 
Moreover, literature has not explored power reduction in HDR video content. To this end, a 
JND model is presented in this paper that is capable of reducing power requirements to 
display HDR video at a minimal loss of visual fidelity. The proposed JND model leverages 
deep learning based Regions Of Interests (ROI) detection, luminous adaptation and spatial 
correction to generate a mask to contaminate the source video. The major contributions of 
this research are 1. ROI based JND model that can reduce the power requirements of HDR 
videos at minimal fidelity loss; 2. power and visual quality related analysis in the context of 
HDR videos, OLED and LCD displays. It is anticipated that the proposed technology would 
operate at the decoder-side (i.e., TVs, set-top boxes, mobile phones) with a separate mode 
that would allow the technology to be enabled or disabled as per the user’s discretion. 

The rest of the paper is organized as follows. Firstly, existing works are discussed. Next, the 
overview of the proposed model and individual components are elaborated in the 
methodology section. Then, the experimental procedure and the results are reported and 
discussed before presenting the concluding remarks in the final section.  

RELATED WORK 

The power consumption of OLED displays can be modelled as a proportion to the sum of 
power consumed by each pixel of a video frame [12] [13] [14]. The power consumption also 
accounts for the supplementary power demand required to drive the display including the 
display safety measures. Exploiting pixel-centric characteristics of OLED displays, multiple 
research works exploit the image characteristics to reduce either intensity or the luminance 
level of the images [1] [15] [3] [16] [17] [10].   

Chondro et al. [1] proposed a dimming technique incorporating power law based pixel 
transformation, scene detection and hue preservation technique. Although up to 73% power 
saving was reported, the fidelity is greatly affected resulting in not more than 0.586 in Visual 
Information Fidelity (VIF) [18]. Shin et al. [17] proposed a deep learning and power 
constraints incorporated framework built on top of a conditional generative adversarial 
network to influence the contrast of an image. Although results indicate a high degree of 
Visual Saliency-induced Index (VSI) [19] score, the fidelity of the test images and videos 
remains heavily affected. Saliency-modulated JND model has been used to save energy 
from images [10]. Here saliency maps developed in the block-based Discrete Cosine 
Transform (DCT) domain are applied to the images before subjecting them to perceptual 
quality optimization. Applying statistical analysis on a binary voting system by subjects, the 
research work concluded that 80% of the test images did not have a major difference in 
perceptual quality. Although 14% energy saving is also reported for the test conducted on a 
12” OLED display, the major contribution has been produced from the images that failed the 
statistical tests. Moreover, an ROI based pixel and subpixel manipulation presented in [20] 
report around 19% power savings at 10-12% brightness reduction and colour degradation. 
Moreover, experiments in the existing research works have been limited to SDR videos.  

To primarily address the concerns related to visual fidelity loss, the proposed JND model, 
exploits useful components from existing literature, adopts the fundamental norm of pixel 
intensity reduction and integrates deep learning and image processing tools resulting in 
power savings at a minimal loss to visual quality. Moreover, the experiments are conducted 



           

 

in the context of HDR sequences to resolve the shortcomings of HDR sequences in this 
scope of research.   

METHODOLOGY 

Overview of the proposed framework 

 

Figure 1 - Framework of the proposed JND model 

Figure 1 demonstrates the framework of the proposed JND model. A luma signal of the input 
image 𝐼(𝑥,𝑦) ∈ ℝ

𝑊×𝐻 is first sent to the autoregression module. The autoregression module 

used here is inspired by the study [21] that proposed JND estimation using free energy 
principle assuming that Human Visual System (HVS) perceives orderly contents. The 
autoregression module applies a decomposition technique that eventually predicts the pixels 
based on the neighbouring pixels. The luminous adaptation module applies background 
intensity reduction on the image 𝐼(𝑥,𝑦)

𝑟𝑒𝑐 ∈ ℝ𝑊×𝐻 that is retrieved from the autoregression 

module. It also comprises hue characterized skin detection technique in order to preserve 
the hue degradation in identified areas. The spatial correction module applies a series of 
filters such as Gaussian and box as well as gradient filters on 𝐼(𝑥,𝑦)

𝑟𝑒𝑐 ∈ ℝ𝑊×𝐻. Additionally, the 

variation between such filtered images and 𝐼(𝑥,𝑦) ∈ ℝ
𝑊×𝐻 is also obtained. This results in the 

removal of several pieces of information, preserving sharp transitions and mean variations 
from the images. The ROI detection module first implements a pre-trained maskRCNN 
model for object segmentation based on image 𝐼(𝑥,𝑦) ∈ ℝ

𝑊×𝐻. The segmented objects are 

fused in a non-linear manner in order to preserve spatial correlation that aids encoding 
processes. Since the spatial location of the object mask can vary in the subsequent framing 
in the presence of motion sequences, temporal Gaussian masking is applied to smoothen 
the variation across frames to avoid any flickering artefacts.  The mask generation module 
fuses the respective outputs from luminous adaptation, spatial correction and ROI 
generation modules to generate the JND mask 𝐽𝑁𝐷𝑜,𝑡. In this context, a VIF based 



           

 

optimization process is followed. The generated JND mask is also influenced by the mask 
of the previous frame to maintain consistency between successive frames. The JND masked  

is normalized and applied to the 
image 𝐼(𝑥,𝑦) ∈ ℝ

𝑊×𝐻 to generate 

the JND contaminated output 
image 𝐼(𝑥,𝑦)

𝑜 ∈ ℝ𝑊×𝐻 

Autoregression 

The autoregression module 
retrieves a predicted image 𝐼(𝑥,𝑦)

𝑟𝑒𝑐  

from a source image 𝐼(𝑥,𝑦) by 

predicting pixels from the 
neighbouring pixels in order to 
remove non-orderly components 
from the image [21]. Given an 
image 𝐼(𝑥,𝑦),weight 𝑤 and 

maximum weight 𝑤𝑚𝑎𝑥 that are 
needed to generate 𝐼(𝑥,𝑦)

𝑟𝑒𝑐  can be 

deduced as shown in Algorithm 1 
and where 𝕂7×7, 𝑣𝑎𝑟(𝑥,𝑦), 𝑅 and 𝑟 

are kernal of size 7 × 7, image 
variance that accounts for both 
pixel intensities and background 
luminance.  𝑣𝑎𝑟(𝑥,𝑦) can be given 

by,  

𝑣𝑎𝑟(𝑥,𝑦) =

{
 
 

 
 𝜎𝑏

2, 𝜎𝐼 < 𝜎𝑏

(𝜎𝑏 × √
𝜎𝑏
𝜎𝐼
)

2

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where, 𝜎𝑏 = 𝑏𝑔(𝑆(𝐼(𝑥,𝑦))/32) and 𝜎𝐼 = √𝐼(𝑥,𝑦)
2 ∗ 𝕂7×7 − (𝐼(𝑥,𝑦 ∗ 𝕂

7×7)
2
. Here, 𝑆(∙) refers to the 

spatial gradient filtering process that extract background luminance. Moreover, 𝑏𝑔 is a 

luminous modulation operator [21] adopted to support 10-bit picture which is given using 𝑘 
as, 

𝑏𝑔(𝑘) =

{
 
 

 
 
68 × (1 − √(

𝑘 − 1

512
)) + 12, 𝑘 < 512

3

128
× (𝑘 − 512) + 12, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Then, the predicted image 𝐼(𝑥,𝑦)
𝑟𝑒𝑐  is deduced from the following relationship. 

𝐼(𝑥,𝑦)
𝑟𝑒𝑐 =

{
 

 
𝐼(𝑥,𝑦)

𝑤
, 𝐼(𝑥,𝑦)

𝑑𝑒𝑐 = 0

𝐼(𝑥,𝑦)
𝑑𝑒𝑐 + 𝐼(𝑥,𝑦) × 𝑤𝑚𝑎𝑥

𝑤
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Algorithm 1: Deduction of predicted image. 

Input: Image 𝐼(𝑥,𝑦), constant matrix 𝕂7×7, 𝑣𝑎𝑟(𝑥,𝑦), 𝑅, 𝑟 

Output:  𝐼(𝑥,𝑦)
𝑑𝑒𝑐 , 𝑤, 𝑤𝑚𝑎𝑥 

𝐼(𝑥,𝑦)
𝑝𝑎𝑑

← Pad image 𝐼(𝑥,𝑦) within [𝑅 + 𝑟, 𝑅 + 𝑟] 

𝐼(𝑥,𝑦)
𝑜 ← Truncate 𝐼(𝑥,𝑦)

𝑝𝑎𝑑
 by 𝑅 pixels in all direction 

Initialize  𝐼(𝑥,𝑦)
𝑑𝑒𝑐 , 𝑤, 𝑤𝑚𝑎𝑥 

for 𝑢, 𝑣 ∈ [−𝑅, 𝑅 + 1], 𝑢, 𝑣 ≠ 0 

          𝐼(𝑥,𝑦)
𝑚𝑜𝑣𝑒 ← Shift 𝐼(𝑥,𝑦)

𝑜  by 𝑢, 𝑣 pixels on 𝐼(𝑥,𝑦)
𝑝𝑎𝑑

 in both directions. 

          𝐼(𝑥,𝑦)
𝑑𝑒𝑐 ← Truncate 𝐼(𝑥,𝑦)

𝑚𝑜𝑣𝑒 by 𝑟 pixels in all directions. 

          𝑑 =
−((𝐼(𝑥,𝑦)

𝑜 −𝐼(𝑥,𝑦)
𝑚𝑜𝑣𝑒)

2
∗𝕂)

𝑣𝑎𝑟(𝑥,𝑦)
 

          𝐼(𝑥,𝑦)
𝑑𝑒𝑐 ← 𝐼(𝑥,𝑦)

𝑑𝑒𝑐  + 𝐼(𝑥,𝑦)
𝑑𝑒𝑐 × 𝑒𝑑 

          𝑤 ← 𝑤 + 𝑑 

          𝑤𝑚𝑎𝑥 ← 𝑑, if 𝑑 > 0 

𝑤 ← 𝑤+𝑤𝑚𝑎𝑥  

𝑤 ← 1, if 𝑤 = 0 



           

 

Luminous adaptation 

The luminous adaptation module consists of an independently processed skin detection 
technique and a background pixel dimmer technique.  

Skin detection 

Skin detection requires the selection of appropriate colour space [22].  In that context, 𝐼(𝑥,𝑦)
𝑟𝑒𝑐  

with its chroma components from the source image is converted to the 8-bit HSV colour 
space. By applying lower and upper ranges of hue, saturation and value to (0,180), (0,38), 
(120, 255) a mask 𝐽𝑁𝐷𝑠 can be generated that can filter out skin detected regions at the 
pixel level. Here, the aforementioned threshold ranges are selected empirically. 
Furthermore, 𝐽𝑁𝐷𝑠 is normalized between 1 and 𝜗, a user defined luminous adaptation 
parameter. 

Pixel dimmer 

A mask 𝐽𝑁𝐷𝑝𝑑 required to suppress the pixel intensity from the background regions is 

generated from 𝐼(𝑥,𝑦)
𝑟𝑒𝑐  by subjecting it to the Gaussian 𝐺(∙) processes and luminous 

modulation operator 𝑏𝑔 as given by the following equation.   

𝐽𝑁𝐷𝑝𝑑 = 𝑏𝑔(𝐺(𝐼(𝑥,𝑦))/32) 

Spatial correction 

The spatial correction module aims to preserve edges, lines and mean variation of the pixels 
and generate two independent masks 𝐽𝑁𝐷𝑒𝑙 and 𝐽𝑁𝐷𝑚𝑣. In conjunction with the ROI mask, 
the edges could be filtered or blurred out. To tackle this problem and to reduce the mean 
pixel variations of the pixels, the masks are deployed independently. 𝐽𝑁𝐷𝑒𝑙 and 𝐽𝑁𝐷𝑚𝑣 can 
be given by,  

𝐽𝑁𝐷𝑒𝑙 = 𝑎𝑏𝑠((𝑎 × 𝑆(𝐼(𝑥,𝑦))/32 + 𝑏) × 𝑙𝑔 + 0.5 − 𝑐 × 𝑆(𝐼(𝑥,𝑦))/32) 

𝐽𝑁𝐷𝑚𝑣 = 𝑎𝑏𝑠 (
𝐼(𝑥,𝑦) − 0.5 ×

∑ 𝐼𝑔
𝑛

0.5 ×
∑ 𝐼𝑔
𝑛

) 

where 𝑙𝑔 = 𝑡 × log (1 +
𝐶(𝐼(𝑥,𝑦))

𝑡
)) and 𝐶(∙) represent series on 2-D convolutions with one 

gradient, two box and one Gaussian kernel of size 5 × 5. 𝑎, 𝑏 and 𝑐 are empirically driven 
parameters. 

ROI detection 

In ROI detection module, a pre-trained maskRCNN [23] model is deployed for object 
segmentation. The maskRCNN is a deep learning framework that has been developed on 
top Region Proposal Network (RPN) which employs a neural network to identify ROIs based 
on binary classifiers. The mask RCNN module used in this research deploys Resnet 50 and 
Feature Pyramid Network (FPN) as the backbone (Resnet-50-FPN) and has been pre-
trained on COCO dataset with 80 classes [24]. Image 𝐼(𝑥,𝑦) is converted RGB colour space 

along with its chroma components and subsequently resized to 1280 × 720 resolution before 
applying the model. The aforementioned resolution chosen such that a tradeoff between 
complexity and picture quality can be achieved. Thereafter, the detected segments are 
concatenated using bitwise operations to generate an ROI mask 𝐽𝑁𝐷𝑟𝑜𝑖. However, an ROI 
mask in its nominative form could adversely affect the encoding process disrupting the 
spatial correlations between pixels. In order to mitigate that, a logarithmic filter is used to 



           

 

alleviate the sudden transition of pixel intensity at the ROI boundary. Then, 𝐽𝑁𝐷𝑟𝑜𝑖 can be 
defined as , 

𝐽𝑁𝐷𝑟𝑜𝑖 = 𝐺

(

  
 
𝐼(𝑥,𝑦 ×

(

 
 1

1 − 𝛼 × log (
𝐼(𝑥,𝑦

𝑚𝑎𝑥(𝐼(𝑥,𝑦)
)
)

 
 

)

  
 

 

where 𝛼 is a design parameter derived empirically. Moreover, 𝐽𝑁𝐷𝑟𝑜𝑖 is normalized between 
0 and 1 so that it can be used with  𝐽𝑁𝐷𝑚𝑣 when fusing the masks. Applying ROI mask can 
introduce flickering artefacts. Therefore, the temporal Gaussian filter with 𝜎 = 10, 
incorporates three past frames to smoothen the sudden intensity variation along the 
temporal domain. Subsequently, 𝛿 is introduced to control the effect of 𝐽𝑁𝐷𝑟𝑜𝑖 on final mask 

𝐽𝑁𝐷𝑜,𝑡. 

𝐽𝑁𝐷𝑟𝑜𝑖 = 𝑐𝑙𝑖𝑝(𝛿 × 𝐽𝑁𝐷𝑟𝑜𝑖 , 0, 1) 

Thereafter, the masks are cached for future use.   

Mask fusion 

All masks generated are fused to develop the final JND mask. However, determining the 
fusion parameters is challenging. An optimization process is used to identify the fusion 
parameters subject to achieving a user-specified VIF threshold 𝑣𝑡. By applying gradient-
based minimization process, the following objective function 𝒥(𝜌) can be optimized.  

𝒥(𝜌) =  𝑐𝑙𝑖𝑝(𝜇 × 𝐽𝑁𝐷𝑒𝑙 + 𝜌 × 𝐽𝑁𝐷𝑟𝑜𝑖 × 𝐽𝑁𝐷𝑚𝑣 + 𝜗 × 𝐽𝑁𝐷𝑝𝑑, 0, 1023) 

subject to:    𝑐𝑙𝑖𝑝(𝑣𝑡 + 0.1, 𝑣𝑡 , 1.0) ≥ 𝑣𝑖𝑓(𝐼(𝑥,𝑦) ≥ 𝑣𝑡 

Here 𝜇 and 𝜗 are empirically tuned parameters; 𝜌 is obtained from the optimization process 
and 𝑣𝑖𝑓(∙) denotes VIF calculations. Moreover, the optimization function does not involve 

skin detection mask 𝐽𝑁𝐷𝑠 in order to maintain fidelity without a specific focus on skin tone. 
Moreover, not more than 10 steps of iterations would be allowed for the optimization process 
in order to reduce the complexity. Post determination of 𝜌, the final JND mask 𝐽𝑁𝐷𝑜,𝑡 for a 

given frame 𝑡 can be derived as follows.  

𝐽𝑁𝐷𝑜,𝑡 =  𝑐𝑙𝑖𝑝(𝜇 × 𝐽𝑁𝐷𝑒𝑙 + 𝜌 × 𝐽𝑁𝐷𝑟𝑜𝑖 × 𝐽𝑁𝐷𝑚𝑣 + 𝐽𝑁𝐷𝑠 × 𝐽𝑁𝐷𝑝𝑑 , 0, 1023) 

A masking correction is applied based on the JND mask of the previous frame 𝐽𝑁𝐷𝑜,𝑡−1as a 

second stage of flickering artefact mitigation. Then, the revised JND mask can then be 
derived as, 

𝐽𝑁𝐷𝑜,𝑡 = 𝑐𝑙𝑖𝑝 ((𝐽𝑁𝐷𝑜,𝑡 − 𝜀 × 𝐺(𝐽𝑁𝐷𝑜,𝑡 − 𝐽𝑁𝐷𝑜,𝑡−1)) , 𝜖
−, 𝜖+) 

where 𝜖− = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑓𝑙𝑜𝑜𝑟(𝐽𝑁𝐷𝑜,𝑡−1), 0) and 𝜖+ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑐𝑒𝑖𝑙(𝐽𝑁𝐷𝑜,𝑡−1), 1023). 

Moreover, the aforementioned correction is not applicable to the first frame. Subsequently 
𝐽𝑁𝐷𝑜,𝑡 is inversely normalized between 1 and 0.  Finally the output image  𝐼(𝑥,𝑦)

𝑜  can be 

obtained. 

𝐼(𝑥,𝑦)
𝑜 = 𝐽𝑁𝐷𝑜,𝑡 × 𝐼(𝑥,𝑦) 

EXPERIMENTS AND RESULTS 

The proposed JND masks were applied to the test sequences with the following parametric 
values 𝛼 = 0.2, 𝛿 = 0.5, 𝜀 = 0.2 and 𝜇 = 0.5. Moreover, the user-specified VIF threshold was 
assumed to be 𝑣𝑡 = 0.8, a value that indicates high levels of visual fidelity and much greater 



           

 

than Chadro et al. could achieve [1]. Furthermore, variants of the proposed JND model were 
constructed by varying 𝜗 and including/excluding skin detection from the proposed JND 
model. In this context, four variants experimented with are listed below.  

• JND Var 1:  𝜗 = 2.5 and 𝐽𝑁𝐷𝑠𝑑 = 1, ∀(𝑥, 𝑦) 

• JND Var 2:  𝜗 = 2.5 

• JND Var 3:  𝜗 = 1.5 and 𝐽𝑁𝐷𝑠𝑑 = 1, ∀(𝑥, 𝑦) 

• JND Var 4:  𝜗 = 1.5 

Further, static pre-scaling parametric models were also implemented for comparison with 
the proposed JND models. In this context, gamma, contrast and saturation are slightly 
modified to contaminate the source video. FFMPEG [25] library is used to introduce the 
parametric adaptation to source videos and the following variants are obtained empirically 
such that power can be reduced at a considerable level of visual fidelity on OLED displays. 

• Pre-scale 1: gamma = 0.7, contrast = 0.7, saturation = 0.9 

• Pre-scale 2: gamma = 0.9, contrast = 0.9, saturation = 0.9      

The parameter selection of Pre-scale 1 ensures heavy power reduction whereas that for 
Pre-scale 2 matches the fidelity of the proposed JND models.  

To evaluate the performance, tests are performed on fifteen BBC HDR Hybrid Log-Gamma 
(HLG) clips extracted from FA cup (sports), His Dark Materials (HDM) (drama) and  Nat His 
(Natural History). Each category comprises 5 videos that are 30 seconds long and 
3840x2160 in resolution. The source and the contaminated videos were encoded using x265 
encoder with a target bitrate of 18 Mbps. Thereafter, the videos were converted to the Apple 
ProRes 422 format in order to be able to play the videos into the TVs using an external 
source. The purpose of using an external device was to nullify the power requirements to 
decode the videos. Moreover, three 65 inch commercial TVs were chosen as the display 
devices: Sony Bravia LCD (LED backlight), LG OLED C2 and LG OLED B1. Also, two modes 
namely standard and filmmaker from OLED TVs and standard and cinema home from LCD 
TV were selected for experiments. The TVs were directly powered by Bryant power 
distribution unit which also aids the acquisition of power readings.   

Evaluation metrics 

Performance needs to be assessed as a trade-off between power savings and visual fidelity. 
The amount of power saved can be measured by the difference (∆𝑃 =  𝑃𝑠 − 𝑃𝑐) between the 
power consumed for displaying the source and the contaminated videos. Here, 𝑃𝑠 refers to 
the power consumed by the source video whereas 𝑃𝑐 denotes power used by the 
contaminated videos. Moreover, a relative measure of power saved can be measured as a 

percentage as %𝑃 = 
𝑃𝑠−𝑃𝑐

𝑃𝑠
. Additionally, the average pixel intensity difference as a percentage 

of the source pixel intensity across the video is also presented in this paper. Furthermore, 
there is no standard quantitative measure for the objective quality assessment of the 
contaminated videos. Therefore, in this research, VSI and VIF have been adopted to 
evaluate the objective quality as they have been used in similar research works [1], [17].  

Performance evaluation  

The performance of the proposed variants of the JND models is presented in Figure 2 (zoom 
in for better clarity) and Table 1. For simplicity, the average power consumption from the five 
videos in each category is presented in Figure 2. Here, F, S and CH denote filmmaker, 
standard and cinema home modes respectively. As expected, there is a considerable 
amount of power saving for the utilization of LCD screen in both cinema home and standard 



           

 

modes. Conversely, in OLED displays, moderate power savings can be obtained in 
filmmaker modes. Moreover, power reduction is unlikely in OLED standard modes with the 
only exception being the HDM sequences. Individual analyses of each video indicated that 
power saving and loss can vary from one sequence to another and they are also deeply 
dependent on the display used. Furthermore, it is evident from Table 2 that the best 
performing variant, JND var 1 makes the maximum power savings among the proposed JND 
models and yields up to 69W (for a FA cup clip with Sony Bravia CH mode) as a result of 
higher luminous adaptation parameter 𝜗. Moreover, the reduction of 𝜗 and the incorporation 
of skin detection reduces the power savings. In this line of trend, JND var 2, JND var 3, and 
JND var 4 produce loss in LG B1 standard mode owing to the heavy power consumption by 
the Nat His sequences which are bright in nature. While 𝜗 remains the dominant factor for 
power savings in LCD displays, face detection masking also provides a significant 
contribution to the power saving as opposed to 𝜗 in LG C2 filmmaker mode at a lower 𝜗.  

 

 

Table 1 - Performance analysis of the variants of the proposed JND model 

Metric Display 
type 

JND Var 
1 

JND Var 
2 

JND Var 
3 

JND Var 
4 

Pre-scale 
1 

Pre-scale 
2 

∆𝑃 (W) 
LG C2 (F) 

17.45 7.69 6.78 8.33 1.62 31.71 

%𝑃 14.14 7.35 4.74 7.20 2.72 23.28 

∆𝑃 (W) 
LG C2 (S) 

11.66 4.99 5.89 1.58 2.49 25.11 

%𝑃 9.79 5.12 5.38 2.21 3.31 17.32 

∆𝑃 (W) 
LG B1 (F) 

8.20 3.08 4.08 1.01 -0.91 23.73 

%𝑃 5.91 2.61 2.96 1.00 0.58 15.42 

∆𝑃 (W) 
LG B1 (S) 

1.68 -2.56 -1.59 -4.52 -0.93 16.05 

%𝑃 2.93 0.08 0.34 -1.28 0.42 9.20 

∆𝑃 (W) Sony 
Bravia 
(CH) 

41.28 23.59 29.77 25.13 16.14 62.83 

%𝑃 18.88 10.98 13.55 11.55 7.76 27.96 

   

(a) LG C2 (F) (b) LG B1 (F) (c) Sony Bravia (CH) 

   

(d) LG C2 (S) (e) LG B1 (S) (f) Sony Bravia (S) 

Figure 2 - Average power consumption of grouped video sequences on respective 
displays and modes. 



           

 

∆𝑃 (W) Sony 
Bravia (S) 

33.86 19.71 21.98 22.17 15.95 57.41 

%𝑃 15.45 9.40 10.06 10.11 7.83 25.29 

VSI 
 

0.99 0.99 0.99 0.99 0.99 0.99 

VIF 0.87 0.86 0.87 0.82 0.84 0.66 

Minimum VIF 0.75 0.74 0.77 0.73 0.74 0.55 

Intensity 
difference (%) 

11.51 12.26 12.16 18.61 5.39 21.25 

 

Quantitative analysis of the visual quality levels indicates that VSI remains constant for all 
variants tested including the pre-scale variants. However, VIF scores remain high for the 
proposed JND models and Pre-scale 1 with minimum VIF is well above 7.0. Minimum VIF is 
critical as few frames with very low fidelity could adversely affect the end-user experience. 
Although Pre-scale 2 demonstrate very high power savings, it comes at a very high cost of 
the quality. For further visual inspection, the first frame of selected video clips is illustrated 
in Figure 3 (they have not been corrected for print media, so are best viewed on an HDR 
display). Although there exists a perceptual difference between the source and the proposed 
variants, the fidelity of the proposed variants remains high in contrast to the Pre-scale 1 
which deteriorates the visual fidelity.  

    

(a) source 

    

(b) JND var 1 (∆𝑃 for LG C2 (F) = 23.05W, 13.31W, 32.00W, 41.83W)  

    

(c) JND var 2 (∆𝑃 for LG C2 (F) = 13.63W, 10.47W, 19.08W, 16.49W) 

    

(d) JND var 3 (∆𝑃 for LG C2 (F) = 9.90W, 1.11W, 19.52W, 17.32W) 

    

(e) JND var 4 (∆𝑃 for LG C2 (F) = 7.80W, 6.25W, 23.51W, 6.69W) 



           

 

    

(f) Pre-scale 1 (∆𝑃 for LG C2 (F) = 12.54W, 4.80W, 9.27W, 7.71W) 

    

(g) Pre-scale 2 (∆𝑃 for LG C2 (F) = 39.11W, 57.41W, 48.74W, 41.83W) 

Figure 3 - Visual qualitative assessment between source, proposed JND models and the 
Pre-scale variants. ∆𝑃 obtained for each sequence is also presented.  

Figure 4 demonstrates a visual comparison between the application of different values of 𝜗 
and skin detection masking through Nat His and FA cup videos respectively.                 

  

(a) JND var 3 (𝜗 =2.5) (b) JND var 4 (𝜗 = 1.5) 

  

(c) JND var 1 (without skin detection mask) (d) JND var 3 (with skin detection mask) 

Figure 4 - Visual analysis of the application of skin detection and changes to luminous 
adaptation. 

CONCLUSION 

High dynamic range videos consume a significant amount of power for displaying purposes. 
To this end, this paper proposes a JND-based model that exploits deep learning based ROI 
detection, luminous adaptation and spatial correction to reduce the power consumption at 
minimal visual fidelity loss. Experimental results report significant power savings in OLED 
filmmaker modes and all modes in LCD displays. The combined analysis of power savings 
and visual fidelity demonstrate superior performance over the pre-scale parametric model. 



           

 

Chrominance adaptations and subjective visual quality assessments will be carried out in 
the future. Further experiments are needed to capture the extra computational complexity 
that would be added to decoding devices while processing the proposed algorithms.  
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