

CONTENT DISTRIBUTION AT MEGA CONCURRENCY SCALE

Girish Gopalakrishnan Nair

Amazon Web Services, India]

ABSTRACT

The rapid pace of content creation, proliferation of larger screen devices
and easy internet access have led to an unprecedented surge in global
user demand for the best-quality content streaming. When it comes to live
sports streaming, unpredictable traffic patterns during a game can often
overwhelm even the most well-designed systems. Reasons for this being:

- The inadequate capabilities of traditional autoscalers to keep pace with
a traffic spike;

- Infrastructure limitations that are apparent only at mega-scale; and
- Suboptimal system configurations.

This paper explores architectural strategies, resources allocation
guidelines and cloud-native workflows that are time-tested to support
mega-scale live streams. This paper also examines common failure
scenarios and anti-patterns, identifies infrastructure bottlenecks and
proposes fallback strategies to enhance resilience and reliability at
massive concurrency scales. Additionally, it shares our experience of
supporting live cricket streaming on the AWS cloud for Indian audiences,
where traffic can surge by over 1 million viewers per minute and
occasionally drops from millions to a few hundred within seconds.

INTRODUCTION

The rise of video streaming platforms has revolutionized the way that the world consumes
media today. This modern streaming landscape is characterized by a relentless demand
for scalable, high-performance applications that can accommodate millions of concurrent
users while maintaining the highest-quality user experiences.

Previous research on large-scale video streaming has primarily focused on aspects such
as video encoding best practices [1], edge computing techniques [2], client behaviour
analysis [3], infrastructure scaling strategies [4][5], or caching mechanisms [6]. However,
live streaming at massive concurrency levels necessitates a holistic approach where all
components seamlessly integrate and operate in tandem. When executed together, the
cumulative resource requirements, including computing power, storage, and network
bandwidth, may exceed the available infrastructure capacity within a given geographic
region or country. Specially, in a country like India where cricket is not just a sport, but is
considered an emotion, over-the-top (OTT) platforms must overcome the challenges
posed by finite infrastructure, limited bandwidth, and other constraints, to deliver content to
millions of concurrent viewers. This paper presents our experience in supporting large-
scale cricket matches, where we witness challenges like traffic surge from 1.5 million to
over 10 million concurrent viewers within the first 10 minutes of the match commencing,
and rapid viewership drops from 13 million to less than 4 million viewers within seconds

due to interruptions. Notably, we facilitated the creation of a world record with 59 million
concurrent viewers and numerous other significant events in India.

UNDERSTANDING SCALABILITY NEEDS

The global video streaming market size is expected to grow from USD 11.0 billion in 2023
to USD 25.5 billion by 2028 at a compound annual growth rate of 18.3% during the
forecast period. [7]

Concurrent User Demand Trends

59 Million In 2023: A record peak
concurrent audience of 59 million viewers
tuned in for Disney Hotstar’s coverage of the
2023 Cricket World Cup final, setting a new
streaming record [8].

32 Million In 2023: Over 500 million
watched IPL in 2023, Jio saw 32.1 million
peak concurrency [9].

7 Million In 2023: FOX Sports says Super
Bowl LVII delivered an average of 7 million
simultaneous streams, up +18% over the
2022 Super Bowl [10].

5.9 Million In 2021: The 2021 UEFA
European Championship final between Italy
and England peaked at 5.9 million concurrent viewers on the BBC's digital platforms (BBC,
2021).

3.4 Million In 2020: The 2020 Tokyo Olympics saw a peak of 3.4 million concurrent
viewers on the NBC Sports app, a record for the network (CNBC, 2021).

TECHNICAL CHALLENGES

This section examines the practical challenges faced by streaming platforms when
accommodating mega concurrent traffic. Consider a scenario where an organization aims
to support a concurrency of 50 million viewers during an upcoming live event. Listed below
are the challenges, potential bottlenecks and practical limitations that may arise when
attempting to accommodate such a substantial concurrent user base.

Finite Infrastructure

Facilitating a massive concurrent user base demands a robust infrastructure capable of
handling high traffic volumes while ensuring acceptable response times. Accommodating
50 million concurrent users necessitates substantial computational resources, upwards of
thousands of CPU cores to ensure a seamless user experience. However, expecting an
unlimited supply of CPUs from any infrastructure provider is unrealistic

Limited Bandwidth

Live streaming events that scale up to a concurrency of approximately 50 million viewers
end up consuming 40+Tbps of bandwidth on Content Delivery Networks (CDNs) for video
delivery (including 4K videos) across India. Therefore, the assumption that a single CDN
possesses the requisite bandwidth capacity, represents a critical oversight, necessitating
careful consideration in planning delivery strategies.

Figure 1 – Concurrency Trends

ISP Peering

Customer diversity, encompassing geographical locations, devices and network providers,
are critical factors in effective traffic distribution planning. If a substantial portion of the
traffic is expected from a single Internet Service Provider (ISP), it may overwhelm the
peering junction between the CDN and ISP. Such scenarios cannot be effectively
simulated during testing.

Sudden Traffic Fluctuation

The occurrence of traffic spikes and drops are inevitable, presuming traditional cluster
auto-scaling mechanisms are adept at managing such fluctuation presents a notable
concern.

SCALING STRATEGIES AND GUIDELINES

Auto-scaling offers a dynamic approach for resource provisioning, enabling organizations
to adjust their computing infrastructure based on demand fluctuations. Some technical
challenges highlighted by this paper can potentially be addressed by determining the
optimal timing for scaling actions (when to scale) and the appropriate magnitude of
resource adjustments (how much to scale).

Scale Cube

The scale cube model talks about 3
dimensions of scaling :

Scale Out

The X-axis of the scale Cube (Fig. 2)
represents horizontal scaling, achieved
through a technique known as scale-out.
This approach involves deploying multiple
instances of the application behind a load
balancer. The load balancer distributes
incoming requests among these application
instances based on a chosen algorithm
(e.g., Round Robin, Least Outstanding
Requests). However, a critical challenge associated with this approach is data access.
Each application instance may require access to the entire data set, necessitating a large
cache to maintain acceptable performance under high concurrency loads.

Data Split
The Y-axis of the scale cube (Fig. 2) denotes data partitioning. This strategy often involves
deploying micro services, with each service encapsulating a specific functionality and
having access to its relevant data subset. Decomposition techniques such as verb-based
or noun-based approaches can be employed to achieve this data partitioning. Combined
with horizontal scaling (scale-out), this approach offers a robust scaling strategy for large-
scale applications. Additionally, it serves as a fundamental unit for load estimation and
subsequent scaling decisions. Hereafter, we will refer to this unit as a scaling domain for
consistency throughout the paper.

Functional Split

The Z-axis of the scale cube (Fig. 2) represents functional partitioning. This approach
leverages scaling by deploying multiple, identical application instances. However, each

Figure 2 – Cube Scale

instance is assigned a specific data subset, ensuring data isolation. A dedicated routing
component (e.g., load balancer or CDN) directs incoming requests to the appropriate
cluster based on pre-defined criteria. Common routing strategies include utilizing request
attributes like the primary key of the accessed entity or customer segmentation (e.g.
routing requests from paying customers with higher Service Level Agreements (SLAs) to
servers with enhanced capacity). This approach offers a significant advantage in failure
isolation, as a malfunction within a single instance only impacts its associated data subset.
When combined with other scaling techniques, functional partitioning contributes to
enhanced platform scalability and reliability.

Cap Theorem

The C, A, P in CAP theorem stand for:

1. C (Consistency): Every node in a
distributed cluster returns the same, most
recent response after a successful write
operation.

2. A (Availability): Every read or write
request for a data item results in either a
successful completion or a clear error
message indicating the failure.

3. P (Partition Tolerance): The system
continues to operate even when the network connecting the nodes experiences a
failure that partitions the network. Nodes within each partition can still communicate
with each other, but communication across partitions is disrupted.

In a distributed streaming ecosystem, achieving CAP simultaneously is not possible.
Therefore, a clear comprehension of when and what to sacrifice, as well as the appropriate
extent of such trade-offs, is a critical factor in facilitating the adoption of the scaling
practices delineated within this paper.

Algorithm: Concurrent-Viewer-based-Dynamic-Scaling

Having established the principal guidelines for building scalable streaming services, the
paper proposes an algorithm to facilitate scaling beyond these spiky traffic patterns.
Traditional cluster auto-scaling approaches rely on metrics such as CPU and memory
utilization. While these auto-scalers can be effectively utilized for non-critical (non-P0)
services or day-to-day traffic, but they are inadequate for scaling P0 services during spiky
traffic situations, as they do not guarantee the completion of scaling before a traffic surge
overwhelms the available server capacity. The paper evaluates the use of a "Concurrent
Viewers Metric" (Cvm) as a key parameter to guide the auto-scaling mechanisms of a
streaming platform.

The algorithm can effectively guide the scaler to auto-scale down but the approach for
scaling down the infrastructure requires more careful consideration. Automatic triggers for
downscaling based solely on a reduction in traffic can be risky, especially at massive
scale, due to the possibility of false positives reported by the various sources. In most
practical scenarios, a manual trigger is preferred to initiate the downscaling process. This
manual approach is typically employed after the conclusion of the live event or when a
sustained decrease in viewership is confirmed, rather than relying on immediate traffic
reduction signals.

Figure 3 – Cap Theorem

1: Variables:

 Va: Current number of actively viewing users

 Vn: Number of newly logged-in users

 Cvm: Concurrent Viewers Metric, calculated as Cvm = Va + Vn

 Vi: Target initial traffic volume for the event

 Vl: Ramp-up ladder of new viewers

 Vb: Buffer capacity to accommodate new viewers during scaling

 Vt: Scaling trigger threshold

 Sf: Scaling factor, metric which will be used to determine the instances to be added

 2: Initialize variables defined:

 Va = Cvm = Vn = Vt = 0

 Vi, Vl, Vb = pre-configured values

3: During the event, update the variables in each time interval:

 Measure Va (current actively viewing users)

 Va = Max(S1, S2 , … Sn) Maximum value of users detected from multiple sources.

Where:

 S1 represents the sum of unique users fetching a particular content segment from

 the CDN

 S2 represents a unique heartbeat sent by a mobile application

 Si represents unique user numbers obtained from multiple sources

 Measure Vn (Realtime stream of logged-in users from Authentication Service)

 Calculate Cvm = Va + Vn

 4: Scaling Trigger Condition:

 If Cvm > Vt then

 Calculate delta between time intervals of each trigger (ΔT)

 ΔT = Ti − Ti−1

- Where Ti is the timestamp of the ith trigger.
- Ti−1 is the timestamp of the (i−1)th trigger.

 Calculate mean of time intervals (μT)

 μT = (T0 + T1 +…+ Tn)/n

- Where n is the total number of triggers

- Tn is time of n the trigger

 Calculate deviation of time intervals of each trigger from mean

 Sf = deviation (ΔT – μT)

 Empower auto-scaler to calculate required capacity

 Trigger Karpenter Scaling(Sf)

 Update Scaling Trigger Threshold:

 Vt = Vt + Vl - Vb

 This adjusts the scaling trigger to account for the expected ramp-up and the buffer
 capacity

HOW WE DO IT

Having established a fundamental understanding of the core principles and algorithms, it is
now crucial to delve into the practical aspects of running such a system successfully in the
real world. This section will provide a detailed examination of the end-to-end process, from
the preparatory stages to the execution of the live event.

Planning and Prioritization

Large-scale event management necessitates meticulous planning. While there are no
silver bullets to address all scaling challenges at once, effective strategies can be
progressively refined through the experience gained from conducting such events over
time. Cloud Service Providers (CSPs), like Amazon Web Services' IEM (Infrastructure
Event Management) & MEM (Media Event Management) teams, are involved in planning
and testing phases which typically ranges from 3 to 6 months for most platforms. This
experience is necessary to ensure that no critical aspect is overlooked, as even minor
misconfigurations or miscalculations can adversely impact streaming performance. The
challenges associated with large-scale video streaming are multifaceted, including
bandwidth requirements, content delivery, scalability, redundancy, and fault tolerance. The
MEM team enhances the operational reliability of business-critical video streaming events.
They cover a suite of AWS media services and follow a structured four-phase approach to
ensure the successful delivery of large-scale video streaming events:

1. Pre-event Review and Preparation: The MEM team conducts an Operation
Readiness Review assessment to identify and mitigate potential risks in the video
streaming architecture and configuration before the event.

2. Event Preparation and Testing: The team develops a comprehensive end-to-end
test plan, creating operational runbook guidance and weekly status updates.

3. Live Support during the Event: During the live event, the MEM team engages
subject matter experts (SMEs) to provide effective monitoring, troubleshooting, and
triaging support.

4. Post-event Analysis, Retrospection, and Summary: After the event, the MEM
team conducts a thorough analysis and retrospection. An event summary report is
generated, which includes an assessment of learning and customer engagement
evaluation.

Prioritization

The first step of prioritization is giving up aspirations to run everything; even under extreme
circumstances. For OTT platforms, the top priority should be ensuring continuous content
playback for viewers. The user flow and potential user paths associated with achieving
smooth playback becomes your P0-Workflow (Priority Zero Workflow). All services that
directly enable viewers to complete this workflow and successfully view content are
classified as P0 services (Priority Zero Services). The remaining services are categorized
as Non-P0s. The prioritization of Non-P0 services (e.g. P1, P2, etc.) can be further refined
based on their specific platform architectures. For the purposes of this paper, we will focus
on the categorization of services into P0 and Non-P0 categories.

The P0 services underpinning the core user experience (P0 workflow) necessitate utmost
reliability and elasticity to guarantee uninterrupted content delivery. In this context, the
paper will examine a typical P0 workflow for live cricket streaming: the typical architectures
employed, the specific parameters that facilitate optimal performance, and contingency
measures in the event of unforeseen disruptions:

P0.1: Authentication Services

A user's interaction with the platform typically begins with the authentication process. The
majority of users will be already signed-in or have an existing account, and mere
authorisation will suffice. The usage patterns for the Registration API, Login API, and
Authorization APIs will vary significantly, and each of these components falls under distinct
scaling domains.

Reference architecture

The Authorization APIs play a crucial role in the video streaming platform, as they are
invoked for every user request, regardless of whether the user is logged in or not. Every
service within the platform leverages the Authorization APIs to validate the user's
permissions and access rights. This high-frequency usage pattern necessitates a different
architectural approach compared to the Sign-in/Sign-up APIs. A serverless set-up, backed
by a NoSQL database or an in-memory cache, can be an effective solution for scaling the
Authorization APIs seamlessly. This approach allows for automatic scaling based on
demand, ensuring optimal performance and cost-efficiency. However, when operating at a
large scale, certain parameters may require fine-tuning to maintain the desired level of
performance and reliability.

Parameters & Considerations

The API Gateway allows configuring burst request limits and maximum request limits.
These limits need to be increased in anticipation of high-traffic events. However when
using an Amazon API Gateway, an often overlooked aspect is the ability to customize the
Integration Request Timeout value for API integrations. The default timeout value is set to
29 seconds, but most API calls, even under scaled traffic, typically complete within 1
second unless the backend is throttled and unable to serve requests efficiently. By
reducing the timeout value to a lower value, such as 1 or 2 seconds, the API Gateway can
scale seamlessly and optimally utilize resources for the given workload. For fire-and-forget
APIs, like those used to capture application heartbeats, the timeout can be set even lower,
around 50 milliseconds.

Figure 4 – Authorisation Micro-service

To handle the inrush of hundreds of thousands of users joining a live stream, the platform
can engage a NoSQL database like Amazon DynamoDB. DynamoDB's "on-demand"
capacity mode, coupled with a well-designed key schema can help address this inrush.
Additionally, to cater to the read-heavy nature of live events, deploying an in-memory
cache like DAX (DynamoDB Accelerator) can provide increased throughput and guard
against increased costs due to over-provisioned read capacity in DynamoDB.

Panic Modes

To ensure optimal latency and reliability, all APIs in the video streaming platform should be
accessed via a Content Delivery Network (CDN) which helps with HTTP Cloning. Apart
from that, in an event of increased requests per second (RPS) (more than the planned
capacity), a "panic mode" can be enabled at the CDN level. This mode will respond with
cached responses, allowing all users to gain access to the system and watch the live
event. This will ensures that all customers are able to stream some content at any given
point in time, prioritizing availability over consistency.

API Gateways provide a feature called "Usage Keys," which can be leveraged to
implement rate-limiting and throttling seamlessly. This feature helps to safeguard the
backend services from being overwhelmed by excessive traffic, ensuring that the platform
remains responsive and stable even during periods of high demand.

P0.2: Dashboard/Home Page

After successful authentication, users land on the Home Page, where they can: explore
available content, search for live matches, and start watching them. The Dashboard page
is critical and architecturally complex as it is built from responses from multiple APIs,
including:

1. Geo-location Service: This API fetches the user's location to provide location-
specific content and personalization.

2. Personalization Service: Based on the user's location and other preferences, this
API retrieves personalized content recommendations.

3. Continue-Watching Service: This API fetches partially watched or bookmarked
content for the user, enabling them to resume their viewing experience seamlessly.

When a user clicks on specific content to watch, other APIs are invoked, such as:

1. Get CDN: This API determines the optimal CDN for streaming the requested
content, ensuring low latency and high-quality playback; and

2. Entitlement API: This API verifies the user's access rights and entitlements to the
requested content, ensuring that authorized users can access only the content they
have subscribed to.

Thus the Dashboard page is built from responses from both critical (P0) and non-critical
(non-P0) APIs, which introduces complexity in terms of performance, scalability, and fault
tolerance.

Reference architecture

The backend APIs of the video streaming platform face significant load and stress during
critical periods, such as the start and end of a live match. At the beginning of a match, a
surge in traffic is expected as viewers attempt to access the platform and start streaming
the content. Similarly, when the match concludes, viewers tend to click on the home page
before exiting the platform, potentially generating another spike in dashboard traffic.

If this scenario is not properly addressed, it can potentially overwhelm the infrastructure
and lead to system failures. While the architecture components deployed for business-as-
usual (BAU) traffic may be similar, the approach to handling large-scale events requires
specific modifications and optimizations.

Parameters & Considerations

Some key optimizations here that can help you scale seamlessly during spiky events are:

Load balancer Sharding and Pre-warming: This architecture has multiple load-
balancers, which implement sharding and distribute traffic across multiple Application Load
Balancers (ALBs). This helps to mitigate potential throttling or resource exhaustion during
traffic spikes by invoking Route53's weighted routing policy to route traffic to shards. ALBs
behind a CDN are also employed for improved performance and reduced latency. The
load balancer is also pre-warmed, for events expecting flash traffic. Whether to shard an
ALB is a decision normally taken at the load testing phase by looking at following
parameters:

1. Number of requests per second expected;
2. Average size of request (Headers + body); and
3. Average response time of request.

EKS Clusters: Carefully select the appropriate instance types for Kubernetes nodes.
Larger instance sizes are a no-brainer when it comes to launching instances, as it reduces
the number of instances to be launched and reduces the frequency of scaling. But this can
lead to CPU underutilization, particularly when using Kubernetes that limit the number of
pods that can be deployed on a single instance. Kubernetes features like resource
requests limits and node affinity are employed to ensure efficient resource utilization and

Figure 5 – Backend Services

workload distribution. High-performance Kubernetes cluster auto-scalers, such as
Karpenter, are used to offload heavy processing by scaling the underlying cloud provider’s
compute service (like Amazon EKS) achieving optimised computing in least possible of
time

Panic Modes

In scenarios where resources get constrained, disabling Non-P0 services is an effective
approach. This approach will free-up Non-P0 resources allowing p0 services to consume
these and scale.

Another panic strategy is to implement static responses from the API. For instance,
instead of invoking backend services to construct dynamic dashboard responses for each
user request, a pre-built static dashboard response can be served. This approach allows
users to view essential information on the dashboard and initiate live stream playback with
minimal processing overhead. This panic mode can be enabled at the Content Delivery
Network (CDN) level, ensuring minimal change at infrastructure.

Another panic behaviour could be serving a default. In cases where the computation of the
optimal CDN URL for a ‘GetCDN’ request is unavailable, a primary or preconfigured CDN
can be used as a fallback option. This ensures that users can access content from any
one CDN even if that is not the best one to serve content to particular user.

P0.3: Video Streaming - Playback of secured content

Upon clicking the Live Match Banner, the video playback is initiated. For a video streaming
platform, the core functionality is delivering smooth, uninterrupted streams to viewers.
Playback must remain flawless at all times and for all viewers, regardless of the scaling
event's magnitude. A viewer's experience is not contingent upon the platform's ability to
handle a specific number of concurrent streams; rather, it hinges on a near-flawless
viewing experience for their chosen content.

Reference architecture

The reference architecture (Figure 6) initiates requests for redundancy across all stages of
the streaming pipeline – from ingestion, playout, encoder, packager to CDN. This
redundancy ensures continued service availability and minimizes the impact of potential
component failures.

Figure 6 – Video Pipeline Architecture

Parameters & Considerations

Pipeline Locking

Redundancy in large-scale video streaming architectures ensures high reliability but
introduces complexities in managing a seamless viewing experience. The key challenge
arises from potential mismatches in chunk IDs and frame alignment across redundant
delivery paths, leading to disruptions or inconsistent playback. The technique AWS
deploys to mitigate this issue is MediaLive's "Pipeline Locking" feature. This feature
provides frame-accurate outputs by synchronizing the video and audio pipelines.

Multi-CDN

Relying on a single CDN to serve a diverse customer base is often insufficient for
achieving optimal performance. CDN performance can vary across different locations and
time periods, as certain CDNs may perform better in specific regions or during certain
times of the day. To address this challenge, the video streaming system should be
designed to leverage the best-performing CDN for a given location and time, ensuring a
superior Quality of Experience (QoE) for end-users. The intelligence in selecting the
optimal CDN is derived from metrics such as Video Start-up Time (VST), Video Start-up
Failures (VSF), rebuffering events and playback failures, etc. By analysing these metrics,
areas where streaming performance is suboptimal and negatively impacting QoE can be
identified and the root causes of these issues can be pinpointed. Utilizing multiple CDNs
mitigates the risk of outages and bandwidth limitations of one CDN.

Timely corrective actions can be implemented by dynamically switching to a better-
performing CDN.Streaming Protocol considerations: HLS or DASH or Both?

The DASH (Dynamic Adaptive Streaming over HTTP) manifest, is an XML-based file that
contains essential information for video playback. HLS (HTTP Live Streaming) manifest is
comparatively easy to read and was developed much earlier than DASH. Both protocols
are efficient in delivering adaptive bit rate streaming.

When deciding on the appropriate protocol for high-concurrency events, even minor
factors can play a significant role. Although DASH is defined as an industry standard, with
wide device support, our experience has shown it is not consistently supported across all
platforms and devices. The Indian market encompasses a diverse range of alternative
operating systems, including KaiOS, iOS, and Linux distributions, which currently lack
DASH compatibility.

A specific challenge observed with DASH for live events when enabling Segment Timeline
is variation in audio segment sizes. The Segment Timeline helps Server-Side Ad Insertion
(SSAI) services to insert advertisements, which is crucial for generating revenue during the
event. But the variation in segments complicates SSAI.

Enabling a segment timeline also result in larger manifests. At scale, large manifest sizes
can become problematic. Especially when these are refreshed every two seconds. This
can generate significant traffic on the CDN as well. Thus the reduced complexity and
comparatively smaller size of HLS manifests have proven effective in the Indian device
landscape.

Panic Modes

To ensure continuous playback and mitigate the impact of potential failures, a world-feed
of the live match is provided as additional input to MediaLive. This redundancy measure
ensures that viewers can continue watching the match in some language, even if the
primary playout servers or the clean feed ingest fails, preventing playback errors and
maintaining a continued viewing experience.

Developing plans for controlled degradation such as the intentional disabling of non-critical
services during critical events, serves as an effective panic strategy. For example, if the
CDN experiences bandwidth exhaustion, the ability to dynamically remove high-quality
renditions, such as 4K and 1080p, becomes crucial. The ‘Manifest Filtering’ feature of a
Packager (MediaPackage) helps to implement this graceful degradation technique. This
prioritizing of lower resolutions enables a larger number of viewers to access the content
at significantly less bandwidth. Without graceful degradation, only a limited audience would
be able to access the content, potentially resulting in errors or suboptimal experiences for
others.

P0.4: Monetisation - Ad insertion and reporting

In the context of cricket streaming in India, where most matches are free to watch and
powered by advertisements, ad insertion is a P0 for organizations to ensure revenue
generation from these streams. There are multiple options available for ad insertion,
Server-Side Ad-Insertion (SSAI) being one of the most common approaches that allows
seamless ad insertion without disturbing the playback.

SSAI involves the integration of an ad decision server (ADS) within the video delivery
workflow. The ADS determines the relevant advertisements for a particular ad slot based
on factors such as viewer demographics, content metadata, and ad campaign rules. The
ad insertion server then seamlessly splices the selected advertisements into the main
content manifest, creating a unified stream for delivery to the viewer. Furthermore, SSAI
maintains a consistent viewing experience, which is crucial for user engagement and
satisfaction.

Reference architecture

To implement server-side ad insertion (SSAI)
at a large scale on the AWS cloud, AWS
employs AWS MediaTailor. This acts as a
manifest manipulator, responsible for
dynamically inserting ad segments into the
video manifest files as they are delivered to
viewers. MediaTailor will front-end the video
delivery pipeline to perform SSAI.

Parameters & Considerations

During large-scale live events, ad request
and transcoding timeouts can lead to
significant revenue leaks if not addressed
properly. To mitigate this issue and maximize ad fill rates and monetization, the
architecture employs ad prefetching. Ad prefetching is a proactive approach where
MediaTailor fetches and transcodes ad assets in advance, before they are required for
insertion. This technique serves two key purposes: it provides more time for programmatic

Figure 7 – SSAI Architecture

ad trading, and it reduces ad insertion latency. Implementing ad prefetching is particularly
crucial in scenarios with high concurrency, stringent latency requirements, or when dealing
with a large volume of ad requests and assets. It helps to optimize ad delivery and
revenue generation by minimizing the risk of timeouts and missed ad opportunities during
live events with high viewer traffic. To reduce the ad transcoding time, “Transcode profile”
is used which can only be configured via AWS Support as of today.

Panic Modes

Fail over and overflows

When implementing Server-Side Ad Insertion at large scales, it is crucial to consider the
predefined limits of the SSAI service, as exceeding these limits can lead to request
failures. To mitigate this issue, an overflow mechanism can be implemented. One
approach is to configure the CDN, such as AWS CloudFront, to bypass the ad insertion
process entirely when encountering errors like HTTP 429 (Too Many Requests) from the
SSAI component. Alternatively, this can be achieved by configuring the GetCDN API to
return the direct origin URL for the core video content, bypassing SSAI during overflow
conditions. By implementing this overflow mechanism, the architecture ensures the
uninterrupted delivery of core video content, even if ad insertion needs to be temporarily
suspended for overflow traffic.

CONCLUSION

Successfully scaling video streaming applications to accommodate millions of concurrent
viewers necessitates a multifaceted approach encompassing robust infrastructure, efficient
content delivery mechanisms, effective data management strategies, and comprehensive
security measures. By meticulously planning and implementing the best practices outlined
throughout this paper, platform engineers can foster a resilient and scalable streaming
ecosystem capable of delivering exceptional viewing experiences to a global audience.

REFERENCES

1. Layered video streaming in large-scale networks -

https://www.sciencedirect.com/science/article/abs/pii/S1084804514001441
2. Large-Scale Video Stream Concurrent Transmission for Edge -

https://www.mdpi.com/2227-7390/11/12/2622
3. Modelling large-scale live video streaming client behaviour -

https://link.springer.com/article/10.1007/s00530-021-00788-4
4. Auto Scaling API Gateway based for K8 - https://ieeexplore.ieee.org/document/8663784
5. Proactive-Reactive Auto-Scaling Mechanism for Unpredictable Load Change -

https://ieeexplore.ieee.org/document/7557733
6. Large-Scale Video Streaming in Highly Heterogeneous Environment -

https://ieeexplore.ieee.org/abstract/document/4359973
7. Markets and Markets, “Video Streaming Software Market by Component (Solutions,

Services)” - https://www.marketsandmarkets.com/Market-Reports/video-streaming-
market-181135120.html.

8. SportsProMedia: 2023 World Cup Final - https://www.sportspromedia.com/news/cricket-
world-cup-final-2023-disney-hotstar-live-streaming-viewership-record/.

9. Mint - “Over 500 million watched IPL in 2023, Jio saw 3.21 crore peak concurrency”
https://www.livemint.com/industry/media/over-500-million-watched-ipl-in-2023-jio-saw-3-
21-crore-peak-concurrency-11686232243972.html.

https://www.sciencedirect.com/science/article/abs/pii/S1084804514001441
https://www.mdpi.com/2227-7390/11/12/2622
https://link.springer.com/article/10.1007/s00530-021-00788-4
https://ieeexplore.ieee.org/document/8663784
https://ieeexplore.ieee.org/document/7557733
https://ieeexplore.ieee.org/abstract/document/4359973
https://www.marketsandmarkets.com/Market-Reports/video-streaming-market-181135120.html
https://www.marketsandmarkets.com/Market-Reports/video-streaming-market-181135120.html
https://www.sportspromedia.com/news/cricket-world-cup-final-2023-disney-hotstar-live-streaming-viewership-record/
https://www.sportspromedia.com/news/cricket-world-cup-final-2023-disney-hotstar-live-streaming-viewership-record/
https://www.livemint.com/industry/media/over-500-million-watched-ipl-in-2023-jio-saw-3-21-crore-peak-concurrency-11686232243972.html
https://www.livemint.com/industry/media/over-500-million-watched-ipl-in-2023-jio-saw-3-21-crore-peak-concurrency-11686232243972.html

10.Steaming media blog - “thirteen years of super bowl streaming viewership stats, 2012-

2024” – february 22 2024 https://www.streamingmediablog.com/2024/02/superbowl-
streaming-numbers.html

11.https://blog.hotstar.com/scaling-for-tsunami-traffic-2ec290c37504
12.https://www.ibc.org/technical-papers/ibc2023-tech-papers-implementing-hls/dash-

content-steering-at-scale/10258.article

ACKNOWLEDGEMENTS
The author would like to thank his colleagues for their contributions to this work. He would
also like to thank the International Broadcasting Convention for permission to publish this
paper.
“Mr. Tony Thomas” Head of DevOps & Quality at JIO, for valuable insights and assistance
during the course of research.
“Mr. Alastair Cousins” Sr.Manager Solution Architect at AWS, for valuable insights and
assistance during the course of research.
“Mr. Maheshwaran G” Principal Solution Architect at AWS, for assistance and inputs.
“Mr. Sanjay Singh” Sr Solution Architect, TMEGS at AWS Professional Services, for data
points and metrics.
“Mr. Ajay Bhardwaj Swami” Sr.Technical M&E Consultant at AWS, for constructive
feedback and suggestions at review.

https://www.streamingmediablog.com/2024/02/SUPERBOWL-STREAMING-NUMBERS.HTML
https://www.streamingmediablog.com/2024/02/SUPERBOWL-STREAMING-NUMBERS.HTML
https://blog.hotstar.com/scaling-for-tsunami-traffic-2ec290c37504
https://www.ibc.org/technical-papers/ibc2023-tech-papers-implementing-hls/dash-content-steering-at-scale/10258.article
https://www.ibc.org/technical-papers/ibc2023-tech-papers-implementing-hls/dash-content-steering-at-scale/10258.article

