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ABSTRACT 

In the realm of video encoding, achieving the optimal balance between 
encoding efficiency and computational complexity remains a formidable 
challenge. This paper introduces a groundbreaking framework that utilizes 
a Large Multi-modal Model (LMM) to revolutionize the process of per-title 
video encoding optimization. By harnessing the predictive capabilities of 
LMMs, our framework estimates the encoding complexity of video content 
with unprecedented accuracy, enabling the dynamic selection of encoding 
configurations tailored to each video's unique characteristics. The 
proposed framework marks a significant departure from traditional per-title 
encoding methods, which often rely on expensive and time-consuming 
sampling in the rate-distortion space. Through a comprehensive set of 
experiments, we demonstrate that our LMM-based approach not only 
significantly reduces the computational complexity required for sampling-
based per-title video encoding—by an astounding 13 times—but also 
maintains the same level of bitrate saving. These findings not only pave 
the way for more efficient and adaptive video encoding strategies but also 
highlight the potential of multi-modal models in enhancing multimedia 
processing tasks. The implications of this research extend beyond the 
immediate improvements in encoding efficiency, offering a glimpse into the 
future of multimedia content distribution and consumption in an 
increasingly video-centric digital landscape. 

INTRODUCTION 

Adaptive streaming [1] has become the cornerstone of modern video delivery, enabling 
content providers to offer a seamless viewing experience across a wide range of devices 
and network conditions. This technology dynamically adjusts video quality during playback, 
based on the user's bandwidth and device capabilities, utilizing a predefined set of bitrate-
quality pairs known as a bitrate ladder. However, the traditional “one-size-fits-all" approach 
[2-4] to constructing these bitrate ladders often falls short. It fails to account for the unique 
characteristics of each video, leading to suboptimal use of bandwidth and a compromised 
viewing experience. 

In response to these limitations, per-title encoding optimization [2] has emerged as a 
solution that tailors the encoding settings for each video title based on its content 
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complexity. This method promises to significantly enhance the viewer's experience by 
optimizing the balance between video quality and file size. However, per-title optimization 
is computationally expensive [5]. It involves analyzing each video to determine its optimal 
bitrate ladder, a process that requires extensive computational resources and time. This 
complexity limits the scalability of per-title encoding, making it a challenge for content 
providers with large libraries of video content. 

 

Figure 1: Rate-distortion curves of two videos with similar Spatial Information and 
Temporal Information 

Recent efforts to streamline the per-title encoding process have explored the use of low-
dimensional hand-crafted features such as Spatial Information and Temporal Information 
(SI/TI) [6] and regression models to predict the rate-distortion (RD) function [7-11], a key 
factor in determining optimal encoding settings. However, this approach suffers from two 
limitations. Figure 1 illustrates the R curves of two videos with similar SI/TI, from which we 
have two observations. First, low-level features are not a good representation of the 
encoding complexity, as they often overlook complex interplays of visual elements that 
significantly impact perceived quality. Second, multiple intersections between the two 
curves suggest that the encoding complexity lies in a high dimensional space. These 
limitations underscore the need for more sophisticated models that can better understand 
video content and predict encoding parameters. 

Against this backdrop, the promise of Large Multi-modal Models (LMMs) [12-14] offers a 
compelling solution. LMMs leverage advances in artificial intelligence to analyze video 
content across multiple modalities—combining visual, audio, and textual information—to 
understand content complexity comprehensively. This paper introduces a novel framework 
that utilizes LMMs for video encoding optimization, aiming to overcome the shortcomings 
of traditional per-title optimization methods. By harnessing the predictive power of LMMs, 
our proposed solution not only aims to reduce the computational expense associated with 
per-title encoding but also improves the accuracy of RD function prediction, leading to 
more efficient and viewer-centric adaptive streaming experiences. This approach signifies 
a paradigm shift in how video content is delivered, promising substantial improvements in 
streaming quality and resource utilization. 



  
BACKGROUND 

Per-title Encoding Optimization 

Per-title encoding optimization [1] represents a targeted approach in the realm of video 
processing, designed to tailor encoding parameters specifically for each video based on its 
unique content characteristics. This method manipulates additional encoding dimensions 
such as spatial resolution, ensuring that each video is encoded in a way that delivers the 
highest perceptual quality within a fixed bitrate budget. However, despite its effectiveness 
in enhancing viewer experience, per-title encoding optimization is notoriously expensive 
and time-consuming [2]. The process involves extensive sampling and analysis within the 
RD space for each video title, requiring significant computational resources. 

This intensive approach, while beneficial for achieving optimal encoding settings, places a 
substantial burden on resources, making it a challenging endeavour for content providers 
who must manage large libraries of video content. Recent advancements in per-title 
encoding optimization have led to two notable approaches: one using curve fitting to 
reconstruct RD functions [15-18] and another predicting these functions based on low-level 
video features with regression models [7-11]. While these methods offer more efficient 
alternatives to traditional exhaustive sampling, they come with limitations. The 
computational complexity of curve fitting techniques, for instance, increases exponentially 
with respect to the dimensionality of encoding configuration. Similarly, predicting RD 
functions using hand-crafted low-level features such as spatial information and temporal 
information may overlook the impact of higher-level content attributes, such as narrative 
elements, objects, and texture type, on encoding efficiency. Furthermore, hand-crafted 
features may fail to capture all the nuances of the data, leading to suboptimal performance 
in video encoding optimization. These limitations underscore the ongoing need for more 
sophisticated models that can holistically account for the multifaceted nature of video 
content in the encoding process. 

Large Multimodal Model 

Large Multi-modal Models (LMMs) [12-14] have emerged as a transformative force in 
video understanding, harnessing the power of integrating multiple data modalities—text, 
images, and audio—to achieve a comprehensive analysis of video content. Their success 
is largely attributed to their ability to discern intricate details and contextual nuances within 
videos, which traditional single-modality approaches might miss [12]. This capability 
enables LMMs to perform exceptionally well in various video understanding tasks, 
including video retrieval [19], content classification [20], and activity recognition [21], 
thereby setting new benchmarks in the field. 

PROPOSED FRAMEWORK 

We initiate our discussion by delineating the foundational assumptions that underpin our 
framework. The first of these is predicated on the notion that videos sharing congruent 
characteristics will elicit analogous verbal descriptions. This assumption is deeply rooted in 
the theoretical understanding that language functions as an information compression 
heuristic [22], a concept that is well-documented within the research field. In practical 
scenarios, this is exemplified by numerous subjective video quality assessment datasets 
[23-25], which often classify video content based on observable characteristics such as the 
level of motion, texture, and camera movement. 

Our second assumption extends from the premise that videos with akin complexity profiles 
are likely to demonstrate comparable RD behaviours. This underlying hypothesis forms the 



  
bedrock of regression-based RD models, where it is implicitly inferred that the intricacies of 
a video's content correlate directly with its RD function. The explicit recognition not only 
provides a more transparent foundation for the mathematical soundness, but also implies 
a more deliberate and methodical approach in the RD function modelling, as we will see in 
the subsequent section. 

 

Figure 2. Proposed LMM-based video encoding optimization system 

Building upon our foundational assumptions, we introduce an innovative framework, as 
depicted in Figure 2. At the genesis of this process stands the source video, which is 
ingested by a Large Multi-modal Model (LMM). The LMM is engineered to distil content 
characteristics from the video, translating complex visual and auditory data into a 
structured semantic representation. This semantic information, echoing our first 
assumption, encapsulates the notion that videos with shared characteristics can be 
uniformly described, compressing intricate content details into a descriptive language that 
mirrors human categorization. 

Leveraging our second assumption—that videos with similar complexities will exhibit 
analogous RD functions—the semantic information is then fed into a k-nearest neighbours 
(KNN) algorithm. The KNN serves as a predictive tool that, using the distilled semantic 
descriptors, forecasts the RD function specific to the video. This function aims to map the 
relationship between bitrate and perceived quality, serving as a pivotal factor in the 
subsequent optimization steps. 

The predicted RD function is then utilized in the Per-Title encoding stage. Here, the RD 
prediction is harmonized with an anchor profile, a predefined baseline of encoding 
parameters, to fine-tune the encoding process to satisfy the requirement from content 
distributors. This tailored encoding is crucial for transcoding the source video into the 
optimized encoding configuration, which is fitted to the video's unique content 
characteristics. 

This framework embodies a strategic blend of linguistic theory and video analytics, 
transcending traditional exhaustive search and feature engineering and paving the way for 
a new era of content-specific encoding strategies that are both efficient and viewer-centric. 

EXPERIMENTAL RESULTS 

Experiment Setup 

Dataset 
We use the Waterloo Generalized Rate-Distortion Dataset (WaterlooGRD) [18] in our 
experiment. The dataset contains 1000 pristine semantically coherent videos. All the 
sequences are downsampled to FHD (1920x1080 pixels), converted to 4:2:0 chroma 
subsampling, and temporally cropped to 10 seconds. The source videos are then encoded 
at 90 bitrate levels at each of the following spatial resolutions 1920×1080, 1280×720, 



  
720×480, 512×384, 384×288, and 320×240 according to the list of Netflix certified devices 
[2]. We evaluate the quality of each video representation using SSIMPLUS [26] due to its 
demonstrated effectiveness in perceptual video quality prediction [19]. In the end, we 
obtained 1000 generalized RD functions. The dataset is further segregated into three non-
overlapping subsets: 490 for training, 210 for validation, and 300 for testing. 

Competing Models 
Our evaluation framework pits the proposed method against two predominant approaches 
in the realm of RD function reconstruction: sampling-based and feature-based methods. 
Within the sampling-based category, we benchmark against methods such as the piece-
wise cubic Hermite interpolating polynomial (PCHIP), reciprocal regression [16], and 
logarithmic regression [15]. To boost the performance of these sampling-based models, 
our experiment utilizes an information-theoretic approach to sampling [18], designed to 
produce a sequence of samples that strategically reduces the uncertainty inherent in the 
RD function. 

In the arena of feature-based approaches, our comparison extends to methodologies like 
SI/TI [6], and the Video Complexity Analyzer (VCA) [7]. For these methods, we employ an 
array of multi-layer perceptrons, honing them through the gradient descent algorithm on a 
designated training dataset. The optimal architecture is then chosen based on its superior 
performance against a set of pre-determined criteria on the validation dataset. This 
meticulous training and selection process ensures that our feature-based approach is 
finely tuned for accurately modelling the RD function. 

Implementation Details 
In our study, we selected the CLIP model [12] for its demonstrated robustness, efficiency, 
and adaptability to serve as the LMM. However, it is noteworthy that other LMMs could 
also be integrated into this framework. We specifically employ CLIP's vision component to 
distil semantic features from test videos. These extracted features, when derived from 
identical segments, are subjected to average pooling to consolidate them into segment-
level features. Consistent with the guidelines provided in [12], we employ cosine similarity 
as our metric for quantifying the likeness between feature sets. For the KNN classifier, we 
have determined that setting K to 3 yields the most favourable outcomes, as evidenced by 
the enhanced performance metrics observed within our validation dataset. 

Evaluation Criteria 
Our assessment of the RD function models encompasses two critical performance 
dimensions: the accuracy of the prediction and the bitrate savings achieved within a per-
title encoding optimization framework. To gauge prediction accuracy, we calculate the 
Mean Absolute Error (MAE) by comparing the model-estimated RD functions against the 
ground truth for each piece of source content. Regarding bitrate savings, we utilize the 
predicted RD functions to inform and guide the per-title optimization process. This involves 
constructing an actual RD function reflective of the predicted convex hull at various bitrates 
and then calculating the Bjøntegaard Delta rate (BD-rate) [26] to quantify the bitrate 
efficiency relative to Apple's established bitrate ladder [3]. The performance is averaged 
across all content in the test set. The experimental procedure is repeated for 50 times with 
different training/validation split, and we report the median performance. 

Performance in Prediction Accuracy 
Table 1 details the performance of various competing models in predicting rate-distortion 
functions, as measured by the Mean Absolute Error (MAE). This measure quantifies the 



  
average magnitude of errors in the predictions, with a lower MAE indicating higher 
predictive accuracy. 

Sample # 0 18 24 

PCHIP N.A. 7.81 ± 0.05 5.12 ± 0.03 

Reciprocal N.A. 9.67 ± 0.08 5.83 ± 0.07 

Logarithmic N.A. 3.61 ± 0.04 2.24 ± 0.04 

SI/TI 2.49 ± 0.05 2.49 ± 0.05 2.49 ± 0.05 

VCA 2.56 ± 0.04 2.56 ± 0.04 2.56 ± 0.04 

Proposed 2.32 ± 0.07 2.32 ± 0.07 2.32 ± 0.07 

Table 1. Performance of Competing Models with Different Number of Samples on Rate-
Distortion Functions in Terms of Mean Absolute Error 

The competing models are evaluated with different number of samples in the rate-
distortion space: 0, 18, and 24. Two key observations can be made from the table: 

• The proposed model exhibits superior performance over all regression-based 
counterparts, underscoring the enhanced predictive power of LMM features. 
Most importantly, the improvement in performance presented by the proposed 
model is statistically significant. 

• Remarkably, the proposed model achieves the best performance among all 
competing models even with 18 quality analysed encoding samples are 
available to the sampling-based models. At the same time, our model maintains 
parity with the best-performing sampling-based method, the Logarithmic model, 
even when 24 additional RD samples. 

Overall, the table underscores the superiority of the proposed model in terms of prediction 
accuracy for RD functions, which is a pivotal aspect of optimizing video encoding 
processes. 

Performance in Bitrate Saving  
Table 2 provides a detailed comparative analysis of RD models in terms of bitrate saving 
in the context of per-title optimization. Alongside the competing models—PCHIP, 
Reciprocal, Logarithmic, SI/TI, VCA, and the proposed method—the table also introduces 
the 'Offline Optimal' result. This result represents an ideal scenario where each rate-
distortion function in the dataset is known in advance, serving as a benchmark for the 
utmost bitrate saving achievable. 

Sample # 0 18 24 

PCHIP N.A. 15.1% ± 0.04% 16.3% ± 0.02% 

Reciprocal N.A. 15.3% ± 0.04% 15.9% ± 0.04% 

Logarithmic N.A. 18.6% ± 0.04% 20.2% ± 0.04% 

SI/TI 13.5% ± 0.06% 13.5% ± 0.06% 13.5% ± 0.06% 

VCA 17.2% ± 0.05% 17.2% ± 0.05% 17.2% ± 0.05% 

Proposed 18.6% ± 0.07% 18.6% ± 0.07% 18.6% ± 0.07% 

Offline Optimal 28.4% 28.4% 28.4% 

Table 2. Performance of Competing Models with Different Number of Samples on Rate-
Distortion Functions in Terms of Bitrate Saving 

The results align with the patterns identified in the previous table, confirming the general 



  
trend observed earlier. Two key insights emerge from the analysis of the table. Firstly, the 
proposed method, even with zero RD samples, matches the bitrate saving performance of 
the state-of-the-art sampling-based algorithmic model at a sampling size of 18. This 
indicates that the proposed model, when integrated into a per-title optimization system, 
can drastically reduce computational demands while attaining equivalent levels of bitrate 
saving. Such efficiency suggests that the LMM method leverages its predictive capabilities 
to streamline the optimization process without compromising on performance outcomes. 

Secondly, the proposed method demonstrates a statistically significant improvement over 
all regression-based models in terms of bitrate saving. This enhancement not only 
underscores the robustness and effectiveness of the proposed method but also highlights 
its superiority in optimizing video encoding parameters. 

Computation Complexity 
We evaluate the processing efficiency of various competing algorithms by examining their 
computational complexity. This is quantified by the average computation time in the 
context of per-title optimization. In the case of sampling-based approaches, the 
computation time encompasses the encoding at three different bitrate levels for each 
resolution, objective quality assessment tasks, and the fitting of RD curves. Conversely, for 
the regression-based method, the computation involves the feature extraction, and the 
estimation of the RD function. The assessment is conducted using 300 10-second 1080p 
videos as the source material, with an Amazon EC2 g5.2xlarge instance serving as the 
platform for benchmarking. 

Models Computation Time (s) 

PCHIP 84.003 ± 1.88 

Reciprocal 83.512 ± 1.83 

Logarithmic 83.027 ± 1.81 

SI/TI 4.613 ± 0.50 

VCA 1.126 ± 0.41 

Proposed 6.047 ± 0.72 

Table 3. Computation Time in Seconds 

Table 3 presents the computation times for various competing models, measured in 
seconds, and includes a margin of error for each measurement. From the data, several 
observations stand out: 

• Feature-based approaches demonstrate significantly higher speed compared to 
sampling-based methods, with the VCA model being the quickest among them. This 
distinction underscores the efficiency of feature-based models in processing video content. 

• The proposed method showcases the capability to operate in real-time, as indicated 
by its computation time. This attribute makes it a viable option for applications requiring 
immediate video processing and encoding decisions. 

• When juxtaposed with the results from the previous table, it is evident that the 
proposed method not only matches the Logarithmic model in terms of bitrate saving but 
also drastically reduces the computation time by approximately 13 times. This efficiency 
gain highlights the proposed method's advantage in offering substantial bitrate savings 
with significantly lower computational demand. 



  
Overall, the table illustrates the computational efficiency of the proposed method 
compared to traditional sampling and feature-based approaches, establishing its potential 
for real-time applications and substantial computational savings without compromising on 
performance. 

DISCUSSION 

Advantage of LMM 

The integration of LMM into per-title encoding optimization presents a transformative 
approach to video processing, offering substantial advantages over traditional methods. At 
the heart of its benefit is the LMM's unparalleled ability to analyze and interpret complex 
video content at a granular level. Unlike conventional models that rely on basic features or 
extensive sampling, LMMs leverage deep learning to understand the nuances of video 
data, including visual elements, audio cues, and textual context. This comprehensive 
understanding enables the LMM-based framework to make more accurate predictions 
about the optimal encoding parameters for each video title. As a result, videos are 
encoded in a way that maximizes quality and efficiency, tailored to the specific 
characteristics of the content. 

Moreover, the use of LMMs in per-title encoding optimization significantly reduces the 
computational overhead traditionally associated with video processing. By accurately 
predicting rate-distortion functions and encoding parameters from a deep, semantic 
understanding of the content, LMMs eliminate the need for brute-force sampling and 
testing across multiple bitrate and resolution settings. 

Limitations and Challenges 

A noteworthy observation is that while the proposed method's savings are impressive, they 
fall short of the 'Offline Optimal' result, which stands at a significant 28.4%. This gap 
indicates the scope of potential improvement and the ceiling of performance that could be 
aimed for in future iterations or enhancements of the model. 

Another notable limitation of the current work is its performance relative to state-of-the-art 
sampling-based approaches, particularly when a high number of RD samples are 
available. In scenarios where extensive RD sample data can be utilized, sampling-based 
methods tend to outperform our feature-based approach, capturing nuances in video 
encoding optimization that our current model may overlook. This gap underscores the 
need for a more holistic framework that integrates the precision and depth of feature-
based approaches, like the one presented here, with the comprehensive data utilization of 
sampling-based methods. Such a combined approach would ideally leverage the strengths 
of both methodologies, ensuring that the predictive accuracy and efficiency of the 
encoding optimization process are maximized across all scenarios. 

CONCLUSION 

Our work represents a significant step forward in the pursuit of more efficient and adaptive 
video encoding technologies. By harnessing the power of Large Multi-modal Models, we 
have not only achieved substantial improvements in encoding efficiency but have also laid 
the groundwork for future innovations in the field of multimedia processing. As the digital 
landscape continues to evolve, we are confident that the insights and methodologies 
presented in this paper will contribute to the development of more sustainable, efficient, 
and user-centric video content delivery solutions. 
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