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ABSTRACT 

Over the past decades, video consumption and video devices have become 
widespread globally. In 2014, mainstream virtual reality headsets marked a pivotal 
moment for 360° video accessibility. Advanced immersive devices, like the Apple 
Vision Pro as well as smartphones and tablets with advanced spatial capabilities can 
now provide users with real-time 6 Degrees of Freedom (6DoF) navigation 
experiences. 

However, the lack of engaging content is hindering potential applications in areas 
such as training and entertainment. Volumetric video is a promising solution. 
However, its production poses challenges, such as the need for natural 3D+t 
reconstruction, coding, and rendering, which still require intensive computational 
resources. 

In 2020, the ground-breaking Neural Radiance Field (NeRF) paper introduced a new 
way to generate natural free-viewpoint renderings of real scenes from sparsely 
captured views. Follow-up research has led to faster and more flexible methods, such 
as the widely used 3D Gaussian Splatting. However, these approaches require 
independent models for each frame, posing a challenge for volumetric video 
representation. To address temporal limitations, extensions of radiance field 
techniques use temporal redundancy to create a compact, temporally consistent, and 
editable volumetric video representation.  

This paper offers a comprehensive overview of state-of-the-art volumetric video 
methods based on neural radiance fields, including their respective advantages and 
drawbacks. Using a diverse multi-view video dataset of diverse real-world scenarios, 
we present an objective evaluation of these methods for video volumetric content 
generation in entertainment and training. 

 

INTRODUCTION 

Novel view synthesis (NVS) is a long-standing challenge of 3D computer vision: the 
rendering of unseen views of a scene from a set of captured views. NVS has a growing 
impact on a wide array of video applications including media consumption [1], sports 
retransmission [2], immersive training [3] and telepresence [4]. The applications fall into one 
of two categories: visual effects or immersive experiences. One common visual effect with 
NVS is the virtual rendering of non-captured camera movement. An illustrative is the Intel 
True View technology [5], which proposes frozen time 360 degree replays of sports 



  
stadiums. In contrast, immersive experiences rely on real-time NVS to display position-
dependant views to a user, allowing them to navigate freely within a virtual scene as if they 
were in the real location. 

Early NVS methods interpolated viewpoints from depth information [6]. These methods were 
capable of rendering realistic novel views in ideal conditions, but they had limited light effect 
rendering capacity and were restricted to rendering views that were close to the reference 
views. Concurrently, novel devices, including the Apple Vision Pro, were making real-time 6 
Degrees of Freedom (6DoF) tracking increasingly accessible. Free navigation of real scenes 
requires reconstructing a complete representation of the scene from recorded videos. In 
recent years, significant progress has been made towards volumetric-based approaches. 
One such approach is Neural Radiance Fields (NeRF) [7] which was first published in 2020. 
This method enables the generation of high-quality views by modelling the scene’s geometry 
and radiance. NeRF demonstrated the capacity of radiance field methods to represent 
complex real scenes with accurate light effects. Following the publication of NeRF, radiance 
fields have rapidly become the most regarded approach for NVS of natural content. 

Early radiance field methods, including NeRF necessitated slow reconstructions for every 
scene to be reconstructed, and could not render novel views in real time. New approaches 
have been implemented from NeRF for faster processing [8], [9], higher quality rendering 
[10], [11] and more stable reconstructions [12]. The recent radiance field method 3D 
Gaussian Splatting techniques [13] has gained considerable popularity due to its 
demonstration of state-of-the-art rendering quality with in-real-time rendering capacity. 

Building up upon the latest advances in radiance field methods, the volumetric video field 
has undergone a rapid evolution in recent years. New techniques have extended the 
applicability of radiance field to a range of classical 2D video tasks, including semantic 
segmentation [14], streaming [15] and edition [16]. The development of real-time dynamic 
representations of radiance fields has opened the door to 6DoF+t navigable content in real-
time.  

However, each approach has its own advantages and drawbacks. We propose an overview 
of NVS methods, focusing on radiance field approaches. We review the latest advances 
towards to real-time 6DoF+t navigation and evaluate the state-of-the-art methods on a 
dataset of scenes showcasing complex human interactions in diverse environments.  

 

NOVEL VIEW SYNTHESIS METHODS 

From multiple images capturing a single scene, NVS algorithms render novel viewpoints that 
have not been previously observed. In order to interpret the image's information, it is 
necessary to understand the position and orientation of the camera relative to the other 
images. There exist methods that generate novel views only from input images without 
requiring prior knowledge of camera parameters, simultaneously based on SLAM [17], [18] 
or state-of-the-art radiance fields [19], [20], [21]. These camera-parameters free methods 
are considered out of the scope of this review. This review focuses solely on methods that 
use known camera parameters of input images. In order to obtain camera parameters from 
multi-view images of a scene, a pre-processing step of structure-from-motion is typically 
used. In this paper, this calibration step is achieved using the structure-from-motion software 
COLMAP [18], as illustrated in Figure 1. 



  

 

Figure 1 - The input images for NVS undergo a pre-processing calibration step. The camera 
parameters are retrieved from the input images with the Structure-from-motion software 

COLMAP. A Multiview Dataset is constituted of the input images and meta-parameters of 
the scene, including camera parameters. 

Interpolation-based View Synthesis 

Interpolation-based NVS methods generate novel views by interpolating pixel information 
between input views (11). Some approaches, called Depth Image Based Rendering (DIBR) 
leverage information from the associated depth maps of the input images for more accurate 
translation of the input pixels to the novel view [6], [22]. DIBR can achieve high-quality 
rendering of intermediate views, but often results in errors at object edges and occluded 
areas and lacks light effect rendering. Light field approaches [23], [24] interpolate all pixels 
in an intermediate 3D space, which is then inferred to render novel views. Light fields can 
render views with complex occlusions and light effects but this necessitates a dense array 
of input views. 

 
 

Figure 2 - Interpolation-based view synthesis. The pixels from the input views are 
interpolated to render the novel view. 

Following the democratization of Convolutional Neural Networks (CNNs) based deep 
learning by Krizhevsky et al. in 2012 [25], CNNs gained popularity for view synthesis 
methods. In recent works, CNNs have been trained as a post-filter to improve the rendered 
images of DIBR-based methods, effectively removing some artefacts [26]. Other methods 
train a CNN-based architecture in place of the interpolation function for DIBR [27]. 
Generative Adversarial Networks (GANs) have demonstrated that a few images of a scene 
can be used to predict other views [28], [29] or enhance NVS renders [11]. While methods 



  
based on deep CNNs for NVS may generate high-quality renders, they are inherently slow 
to infer which results in low rendering frame rates.  

Learning-based volumetric representations 

 

Figure 3 - 3D Model learning-based View synthesis from volumetric representation. A 
volumetric representation of the scene is reconstructed from the input images. After 

complete training, novel views are rendered by inference of the volumetric representation. 

The rendering of views from a volumetric representation is a well-studied subject of 
computer vision. For instance, photorealistic models can be rendered from synthetic scenes 
modelled as meshes using the latest rendering technologies. However, models used to 
design synthetic data are limited representations of the real world and differ significantly 
from the light physics behind the human vision. Some works have proposed the use of CNN 
architectures for higher quality mesh rendering [30], [31], [32]. However, these 
representations are partially differentiable, which makes them difficult to optimize without a 
high density of input images. Seminal works proposed the use of a plenoptic function as a 
volumetric representation of scene, capable of rendering light coherent novel views [23], 
[24]. The plenoptic function is a 5D function describing the light flow at any 3D position of 
any 2D orientation. With recent advances in machine learning, a learning-based approach 
has become a viable option. 

Most modern approaches to learning-based volumetric representations feature a complete 
or partial representation of the plenoptic function. A generic workflow is presented in Figure 
3. Prior to rendering novel views, the volumetric representation must be reconstructed from 
the input images. Input views are rendered from the representation, and then an error loss 
is computed based on the difference between the rendered image and the reference images. 
The loss is then propagated backwards to adjust the volumetric model parameters into a 
new model that more closely renders the reference images, until complete convergence is 
achieved. 

At the condition of having a fully differentiable rendering pipeline, a variety of volumetric 
representation can be trained to render novel views of a scene. Multi-plane images (MPI) 
approaches divide the plenoptic function into successive planes that store colour and 
transparency information [33], [34], [35]. While these approaches are fast and capable of 
photorealistic renderings, MPI are limited to rendering views facing a single direction, as a 
perpendicular view to the planes cannot be rendered. Broxton et al. [36] demonstrated that 
a structure of spherical planes can be used for efficient 360° scene rendering, with the 
limitation that rendered views must be close to the circle's centre. 

 

NEURAL RADIANCE FIELDS 

NeRF 

The Neural Radiance Fields (NeRF) model, published in 2020 by Mildenhall et al. [7], 
marked a significant shift in the field of volumetric rendering. The paper attracted 



  
considerable and growing attention, as 
evidenced by the citations graph in 
Figure 4. NeRF introduces a fully 
connected deep network that outputs 
volume density and view-dependent 
radiance at any point in space. A ray-
casting strategy is proposed to retrieve 
the colours of any view. The pixel ray is 
projected into the three-dimensional 
space, sampled into three-dimensional 
points, and the density and radiance of 
each point are inferred by a multilayer 
perceptron (MLP). The pixel colour is 
obtained with a classical ray-casting 
rendering. The MLP is trained from 
scratch for any new scene 
reconstruction. NeRF is a powerful 
representation capable of generating 
photorealistic renders of complex scenes and a flexible and simple volumetric 
representation.  

Following the introduction of NeRF, numerous radiance field architectures have been 
proposed. IBRNet [37] blends classical interpolation-based view synthesis with a non-scene-
specific radiance field MLP. Optimized radiance field architectures been demonstrated to 
have real-time rendering capacities [38], [39], [40]. More efficient sampling strategies have 
been studied for faster rendering [41], anti-aliased and generalizable NeRF for boundless 
scenes [10], [42]. Many extensions of radiance fields have been proposed to extend the 
applications to other research fields. Large-scale NeRF extend the capacities of radiance 
fields to city-scale models [43], [44], [45]. Other contributions on scene understanding 
integrate NeRF into a scene graph [46], [47], for an editable volumetric representation. A 
large amount of NeRF studies are focused on more specific tasks such as avatar or face 
reconstruction [48], [49], [50]. 

 

Figure 5 - Radiance Fields reconstruction pipeline. 

Reconstruction of radiance fields from a limited set of views is possible, but failure may occur 
if the captured views are too sparse. The reconstruction process involves recovering a 5D 
function from 2D images, which is an under-resolved problem. Significant advances have 
been made in improving radiance field stability with regularizations, which are rules to 
constrain the radiance field function to converge towards a coherent model. Three main 

Figure 4 - NeRF paper citations over the years. 



  
regularizations have greatly improved radiance field stability. The homogeneity 
regularization, proposed as Total Variation (TA) by Lombardi et al. [51], encourages the 
model to have homogeneous zones. This means that the model must feature compact 
objects with diffuse colour. The regularization can be applied on 3D points [8], [52], [53] or 
encouraged on adjacent pixels of the rendered views [12], [54], [55]. Sparsity regularization 
encourages the emptiness of the model, thereby reducing the occurrence of unstructured 
artefacts. Beta-loss [8], [51], [51], Cauchy-loss [8], [39], [56] and entropy loss [53], [54] have 
been demonstrated to be efficient losses for sparsity regularization. Finally, appearance 
regularization encourages renders to appear correct, with the use of a trained CNN [12] or 
GAN [11]. 

Method 

Regularization type 

Homogeneity Sparsity Appearance 

sample ray sample ray image 

Neural Volumes TV  Beta   

NeRF      

NSVF   Beta   

Baking-NeRF    Cauchy  

PlenOctree    Cauchy  

MIP-NeRF 360 Dist     

DirectVOXGO RGB   Entropy  

Plenoxels TV  Beta Cauchy  

RegNeRF  Depth   Colour 

InfoNeRF  Gain  Entropy  

Dense Depth Priors  Depth    

Table 1 - Overview of regularisations for radiance fields 

Spatially Encoded Radiance Fields 

NeRF represents a significant advance in the field of computer vision, but it comes at a cost. 
The MLP, a key component of the NeRF model, is a relatively slow network to infer, requiring 
multiple inferences for a single pixel. One of the major advances in radiance field research 
has been the simplification of the implicit radiance function. To reduce the complexity load 
on the MLP, it can be spatially decomposed into smaller functions, as demonstrated in [57]. 
Yu et al. demonstrated that the radiance function can be reduced to a simple MLP-free 
representation, encoding density directly and orientation-dependent colour in a simple 
parametrization [8], [56].  

Other research has investigated the use of a voxel grid to store feature vectors in the three-
dimensional space. The feature vectors are trained alongside the MLP [53] and inputted to 
the MLP depending on the sampling location. The volumetric model information is divided 
into smaller batches that are more focused on local features. Consequently, equal or higher 
rendering quality to NeRF can be achieved with a smaller MLP architecture, resulting in 
faster rendering. As demonstrated in [39] and [58], feature vectors can be stored in sparse 
voxel grids. Müller et al. developed Instant-NeRF [59] a multi-resolution feature voxel grid-



  
based radiance field, which enables the rendering of higher-quality radiance with faster 
rendering speeds. 

   

Figure 6 - Example representation of spatially encoded radiance field. 

3D Gaussian Splatting (3DGS) is a method published in 2023 [13] that has rapidly gained 
recognition in volumetric reconstruction research. It is commonly associated with radiance 
field methods, and is a differentiable point cloud-based approach for learning-based 
volumetric rendering. The 3DGS model is composed of 3D Gaussians with geometry, 
orientation–dependant colour and density trainable parameters. Novel views are rendered 
through rasterization of the Gaussians onto the new view image plane, which is a faster 
process than ray casting, while maintaining most properties of radiance field rendering. In 
contrast, previous learning-based point cloud rendering approaches [32], 3DGS generates 
and prunes points during reconstruction, and is not dependent on a dense point cloud 
initialization.  

 

Figure 7 - Illustration of the temporal flickering in Gaussian Splatting renderings of adjacent 
frames on the Carpark scene [60] 

Radiance field methods are flexible yet powerful trainable representations of 3D scenes. 
Intuitively, training radiance field models using successive video frames as input results in 
a 4D representation of a dynamic scene. While this is true, the lack of temporal constraints 
associated with the underlying under-resolution of the radiance field reconstruction results 
in temporal artefacts during rendering of dynamic scenes. Figure 7 illustrates the flickering 
that can occur with sparse input views. The phenomenon of flickering is particularly evident 
in reconstructed zones with a higher degree of shape ambiguity, where numerous potential 
reconstructions could satisfy the reference images rendering. Consequently, windows 
reflections and occluded areas exhibit more pronounced flickering artefacts. 



  
Dynamic Radiance Fields 

The integration of the temporal dimension in a radiance field-based volumetric 
representation offers two benefits. Firstly, it increases temporal homogeneity, reinforcing 
spatial information with temporal redundancy. Secondly, it addresses temporary occluded 
areas. Deformation-based approaches achieve this by dividing the dynamic radiance field 
into a spatial radiance field and a dynamic deformation field [49], [61], [62]. All temporal 
instants respect morphologically consistent changes. Similar proposals have been 
published for dynamic 3DGS [63], [64]. Other dynamic radiance field papers demonstrate 
excellent performance by inputting the temporal dimension to a first MLP [15] or the feature 
grid [65]. 

In contrast to NeRF-based methods, 3DGS features a fully explicit volumetric model that 
can be more directly extended to the temporal dimension. Yang et al. [66] extend the 3D 
Gaussians with a temporal dimension and constrain them to coherent movement. In 
SpaceTime Gaussian Feature Splatting (STG) [67], polynomials are trained to represent the 
3D Gaussians movement, forcing smooth movement. 

 

METHODS COMPARISON 

The comparison of Radiance Field methods is a challenging task, given it is an evolving 
field. Evaluation of methods is often conducted on older datasets that may not fully reflect 
the capabilities of state-of-the-art methods. Many methods have metadata prerequisites, 
such as the scene bounding box or depth maps. Moreover, a significant number of radiance 
field implementations are designed for specific content, such as full frontal views, inside 
captures and concentric views. We evaluate the methods on scenes of the MUVOD Dataset 
[68], a compilation of multiview video sequences from various sources. The sequences 
feature varied content, environments, and capture rigs, and include scenes focusing on 
human interaction. 

The evaluation dataset comprises 14 sequences made of between 8 and 30 views. The view 
calibration is conducted using COLMAP [18]. One middle view is excluded from the training 
and retained for evaluation purposes for each sequence. Following training, the evaluation 
view is rendered and compared with the reference. The evaluation metrics employed are 
PSNR, SSIM and LPIPS. The higher the PSNR and SSIM the better, the lower the LPIPS 
the better. The reconstruction time is the training time of the volumetric representation. The 
rendering time is the average rendering time for a frame. The memory usage is the average 
size of the volumetric model for a sequence. 

The following methods were evaluated: Plenoxels [8], Nerfacto [9], 3DGS [13] and STG [67]. 
Plenoxels and Nerfacto were selected to represent spatially encoded radiance fields. 
Nerfacto is a community-driven implementation of Instant-NeRF [59]. Plenoxels is trained 
on a high-resolution grid of 10243 voxels. Both Nerfacto and Plenoxels utilize the COLMAP 
calibration sparse point cloud, as described in [69], to initialize their bounding boxes. 3DGS 
is the trained for 7000 iterations. The STG method is the only dynamic method of the tested 
methods and is a dynamic extension of 3DGS. It is evaluated on five frames, and the results 
are averaged to be equivalent to a single frame, as with the other methods. Other state-of-
the-art methods such as Mip-NeRF [10] or GANeRF [11] are not evaluated despite their high 
rendering quality due to their lengthy training times. The methods are trained with default 
parameters on a Nvidia A100 GPU, and the results are shown in Table 2. 



  

Method PSNR ↑ SSIM ↑ LPIPS ↓ 
Recon 
time ↓ 

Memory 
Usage ↓ 

Plenoxels 22.963 0.810 0.368 45 min 2,85 Go 

Nerfacto 24,662 0,816 0,261 8 min 167 Mo 

3DGS 27.803 0.866 0.220 8 min 140 Mo 

STG 29.523 0.916 0.177 10 min 5 Mo 

Table 2 - Methods comparison results. Average reconstruction and rendering metrics over 
14 Multiview sequences. 

Compared to all three other methods, Plenoxels has lower performance for each metric. 
Plenoxels' regular voxel grid stores feature vectors at the same resolution throughout the 
scene. This results in suboptimal information resolution for reconstructing foreground 
content, which has a higher resolution in reference images. In Figure 8, the foreground 
content is visibly blurred for the Plenoxels renders. This data structure also results in long 
training times and higher memory consumption compared to other methods. 

Nerfacto performs significantly worse than 3DGS and STG on all rendering quality metrics, 
but has the lowest reconstruction time tied with Nerfacto and a comparable memory usage 
to 3DGS. Renders of two scenes are shown in Figure 8. The rendering quality of Nerfacto 
is very high for simple content like the car, but the reconstruction is particularly unstable for 
more complex scenes. For example, the people in the background in the lower image are 
poorly reconstructed due to occlusions from the people in the foreground. 

3DGS and STG have the best rendering quality compared to the other two methods. The 
3D Gaussians are a powerful and flexible representation. Even for difficult scenes, the 
training converges to a coherent geometry due to the point cloud initialization with COLMAP. 
3DGS and related work are a promising solution for reliable high quality volumetric video 
with real-time rendering. 

 

Figure 8 – Renders from sequences PoznanStreet [60] and MartialArts [70] 

STG renders have better quality for every metric compared to all three other methods. This 
demonstrates the benefit of temporal information that can resolve occlusion ambiguities. If 



  
part of the scene is visible in the other training frames, this information constrains the 
occluded area to coherent content. The average reconstruction time of STG for a single 
frame is comparable to 3DGS and Nerfacto, and could be reduced by training with more 
frames. STG has significantly lower memory consumption than the other methods 
evaluated. A single model is used for all five frames, resulting in an optimized, memory 
efficient model that could be further optimized by training on a larger number of frames. 

The image metrics used evaluate images independently, and the video rendering of STG is 
not compared to the reference video. However, there is a strong gain in temporal stability of 
the renders compared to training independent frames with 3DGS. Figure 7 illustrates the 
rendering of independent frames and Figure 9 illustrates the simultaneous training of 
multiple frames with STG. Temporal flickering is visible for 3DGS in areas of ambiguous 
geometry, while renders are coherent for STGFS in static areas. While this can have an 
important impact on subjective quality, it is a missing piece of information for PSNR, SSIM, 
and LPIPS, which are the metrics classically used for volumetric video quality evaluation. 

 

Figure 9 - Illustration of the temporal stability in Spacetime Gaussian Feature Splatting 
renderings of adjacent frames models on the Carpark scene [60] 

 

CONCLUSIONS 

In this paper, we provided an overview of volumetric video, focusing on recent advances in 
radiance fields for real-time free navigation of natural content. Advances in radiance field 
training and rendering optimization, reconstruction stability, and temporal expansion were 
detailed. The performance of state-of-the-art radiance field methods was evaluated in terms 
of objective metrics, training complexity, and memory usage on a multiview video dataset of 
complex scenes.  

Since the introduction of NeRF in 2020, volumetric video has steadily evolved towards 
reliable application in real-world use cases. Radiance field techniques keep improving and 
are close to maturity for widespread use. Volumetric video could be the long-awaited answer 
to the lack of engaging content on immersive displays, helping content providers create 
immersive experiences with minimal production costs. 
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