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ABSTRACT 

Volumetric Video (VV) lets viewers interact with realistic virtual 3D scenes in 
real-time. It enhances the quality and realism of video broadcasting and 
conferencing, delivering a vivid and immersive 3D experience. Holographic 
communication, concert and VR experiences benefit from it. VV data is often 
recorded as point clouds or meshes with shape and texture data. This leads 
to a substantial volume of data that requires efficient compression and 
streaming. Nevertheless, there is a lack of a universally accepted standards 
for VV file formats, resulting in many organizations implementing their own 
individualized approaches. Hence, we suggest VVglTF, a specific extension 
that supports the glTF file format and ensures VV compatibility. The open-
source 3D content file format glTF is optimized for the Internet. We utilize 
glTF's rendering workflow to play VV of any duration or file size efficiently. 
Custom extensions in glTF expand the functionality of the glTF model format 
and offer customization of VV playback. We also developed a simple and 
efficient VVglTF streaming system based on HTTP Live Streaming 
technology for video texturing. It is designed to efficiently play VV content 
across different network conditions by adjusting the frame rate and number 
of frames per glTF file. In our experiments we validate the efficiency of our 
approach. 

INTRODUCTION 

Volumetric video (VV) is a type of video, typically created by simultaneously capturing and 
reconstructing 3D scenes from various perspectives, often including humans or objects, with 
the aim of producing an authentic and engaging experience for its viewers. VV technology 
brings real people into virtual spaces and facilitates 3D interaction inside the Metaverse. VV 
pipelines can include four major modules as shown in Figure 1, from Volumetric Capture, 
Volumetric Processing, Volumetric Encoding to Decoding and Rendering. VV is produced 
by utilizing cameras, sensors and software, which collaborate to acquire and analyse data 
from several viewpoints. 

VV files are typically stored as dynamic 3D point clouds (1, 2) or dynamic 3D meshes (3, 4, 

5) which necessitate the storage of geometric information in addition to texture (i.e. colour 

information). This results in an enormous quantity of data that must be compressed and 

transmitted efficiently. Nevertheless, there is no universal standard for VV file formats. 

Various companies and organizations have developed their own proprietary solutions.  As 

a result, the majority of VV content is currently not accessible across several platforms to 



  
the users, while Metaverse applications require cross platform support, and users with 

different devices should have the same content and same user experience. To address this 

limitation, some initiatives have been made to establish interoperability and open 

specifications for VV compression, packaging, and transmission. An example of such a 

specification is the Volumetric Player Format Specification, published by the standards 

consortium Volumetric Format Alliance (20). The specification outlines standardized 

methods for capturing and compressing extensive scenes containing more than 100 

individuals, with a data range of 9 megabits to 120 megabits. The document further 

delineates techniques for establishing a linkage between a volumetric playback application 

and a backend server, therefore enabling streaming of volumetric data. 

 

Figure 1 – Typical volumetric video pipeline, VVglTF is the solution for volumetric encoding, 
decoding and rendering. 

Another example is MPEG-5 Part 2 LCEVC, published by the Moving Picture Experts Group 
(MPEG), an international standardization organization. The specification defines a low-
complexity enhancement video codec (LCEVC) that can be used to enhance the quality and 
efficiency of any existing or future video codec. It also supports VV coding using point clouds 
or meshes as input formats.  

To attain the interoperability of VV data, a potential approach involves enabling VV playback 
using existing 3D file formats. We examined six widely used 3D file formats (OBJ, FBX, USD, 
glTF, X3D, STL). glTF emerges as the most viable standard file format when compared to 
the other formats (Table 1). Similar to 2D video, VV has multiple frames. Each VV frame is 
a 3D reconstruction of the real world, and the data should be visualized frame by frame. 
glTF is a JSON-based 3D scene description file format, which contains a whole scene, 
including geometry, materials, textures, and animations. 

glTF extensions expand the functionality of the underlying glTF baseline format. Extensions 
provide the capability to add novel attributes, such references to other data. Additionally, 
extensions can describe the structure and format of this external data. Furthermore, 
extensions can offer new meanings for parameters, establish reserved identification 
numbers, and create fresh container formats. Extensions have the potential to be included 
into the core glTF specification in a subsequent version of glTF. 



  

 

Table 1 – Comparison of 3D file formats. 

To enable the VV features in glTF, we developed a custom extension following the current 
architecture of the glTF standard. In this specification, every frame of a video sequence has 
a corresponding mesh stored in the VVglTF file. This way the video provides a texture for 
every 3D mesh of the VV sequence. Using our VVglTF file format enables us to simply apply 
any codec with the portable file format and to support multi-platform. 

The contributions of our work are as follows. First, we designed and implemented a novel 
cross platform glTF file format with corresponding VV player, i.e. VVglTF. Second, we 
developed a novel VV streaming system based on VVglTF that allows playback with 
adaptive streaming. This enables live streaming of VV in glTF. Finally, we conducted an 
experimental evaluation with VV examples, validating the efficiency of our approach. 

RELATED WORK 

Volumetric Video Content Creation 

VV (6) allows to reconstruct real world scenes and objects in 3D, enabling visualisation and 
interaction with 6 DoFs, namely, interactive selection of the location and the direction of the 
viewpoint. This results in high interactivity and realism. In order to capture volumetric video, 
typically dedicated studios with multiple fixed cameras are used (3, 4). Nevertheless, 
handheld cameras and capture in-the-wild has also been done (5). In addition to cameras 
often also depth sensors are used (3). 

After the acquisition with colour and optional depth cameras, usually the scene is 

reconstructed independently for each frame obtaining temporally inconsistent 

reconstructions. Then, the reconstructions are processed to get temporally consistent 

reconstructions (3, 4, 5). For temporal consistency, the reconstructions are tracked obtaining 

registered reconstructions. In the case of meshes, the registered reconstructions have the 

same topology and connectivity over a certain time, which helps to define a fixed texture 

atlas. Temporal consistency is useful since it improves storage and streaming of the content. 

There are also systems, that use an image-based rendering approach instead of meshes. 
For example, in Project Starline (8), colour and depth images are streamed using a custom 
format. 

Related to these VV generation methods, different storage and file formats are adopted. A 
universal display and data storage file format is missing, limiting interoperability and data 
sharing among them. VVglTF aims to provide a standardised format for VV display and data 
storage with our new glTF scene descriptor.  



  
Point Cloud Compression  

As an alternative to dynamic 3D meshes, VV can also be represented as dynamic 3D point 
clouds. Point Cloud Compression (PCC) is a method used to compress such data. MPEG-
PCC (17) is an intricately developed standard for point clouds (ISO/IEC 23090-5) that 
includes a collection of 3D coordinate points (x, y, z) together with reflectance and RGB 
properties assigned to each point (18).  The MPEG-PCC standard facilitates efficient and 
sustainable distribution of real-world point cloud data. As open standard, MPEG-PCC data 
can be easily adapted to different platforms. It could also be used in combination with 
VVglTF. 

Point Cloud Streaming 

Besides methods for compression there are methods tailored specifically for online 
streaming. For example, Kammerl et al. (9) encodes differences between frames computed 
by a double octree structure to leverage temporal redundancies. This approach does not 
consider user adaptation. A term used to refer to techniques that involve user adaptation is 
adaptive streaming. These methods first segment the point cloud into non-overlapping 
regions that are encoded at different quality levels, and only the regions within the viewport 
are streamed at a high-quality level. Examples of adaptive streaming approaches are DASH-
PC (10), Park et al. (11, 12) use 3D tiles, Subramanyam et al. (13) use tiles, and Han et al. 
presented ViVo(14) where the point cloud is segmented into cells. Recently, machine 
learning models have been introduced by Huang et al. (15) and Zhang et al. (16). 

GLTF EXTENSION DESIGN 

glTF is a standard for distribution of 3D content. It is widely adopted and enables 
interoperability across systems and platforms that use 3D data. The importance is increasing 
with growing popularity of applications such as XR and the Metaverse. As a 3D content 
format, glTF follows basic principles from the computer graphics community, being a node-
based scene description format. These principles are somewhat different from those in the 
video communication community, rather thinking in sequences of video frames. VV is both, 
dynamic 3D geometry with a sequence of video associated as textures. Our extension 
VVglTF is designed to combine the principles efficiently. A video sequence, which can be 
encoded in any supported standard format, is combined with a sequence of 3D meshes, 
which can also be encoded in any supported standard format. 

VVglTF is a custom extension to enable VV playback based on the glTF 2.0 standard. It 
utilizes the same underlying graph structure of glTF as the core specification as depicted in 
Figure 2. The VV controller uses the 3D render engine, video player and glTF 3D loader API 
to control the VV playback. 

VVglTF uses the video player API to decode the video, get the video duration (total number 
of frames), frame rate and the video frames. The VV controller converts each video frame 
to a texture and assigns them to the material of the VV meshes. The glTF render engine 
only renders and shows the node elements specified in the scene description. It ignores the 
elements missing in the scene structure, even if the elements are embedded in the glTF file. 
VVglTF uses this feature to enable efficient rendering of VV with glTF. All meshes of a given 
sequence of VV (chunk or group-of-frames) of a certain length (number of frames, see below) 
are stored in the VVglTF file, but only one should be displayed at a time. This is controlled 
by the video, which activates only one 3D mesh at a time and provides the corresponding 
texture to it. 



  

 

Figure 2 – Design of VVglTF. 

Since glTF is a scene description file, it keeps the composition of a scene containing both 
VV and normal 3D objects. The VV node element contains the extension properties, it keeps 
the video address and a list of mesh IDs corresponding to the sequence of the video. The 
VV controller creates the 3D object based on the node configuration and switches the mesh 
primitive data of the VV following the playback of the video. VVglTF keeps all 3D meshes of 
the VV sequence in the buffer, like any other 3D mesh in the glTF file. Each VV frame mesh 
has a unique mesh ID and primitive description data in the glTF file, following the glTF 2.0 
specification. Any 3D mesh coding can be applied here in principle to efficiently compress 
the data. In our experiments below we used Draco. 

The mesh primitive data in the glTF data structure can be saved either in a separate binary 
file or embedded in glTF JSON. The file stream loader retrieves the VV mesh data in 
response to sequential requests from the VV controller. A delay of VV playback may be 
caused by loading of mesh buffer data from the binary data.  A long VV file has a longer 
searching time of mesh buffer data from the binary data. Proper alignment of VV frame 
textures with the corresponding mesh objects is crucial for smooth playback of VV. 
Nevertheless, the loading time for video textures is often faster than the loading time for 
mesh primitive data due to discrepancies in resource loading time. This may result in 
desynchronization between the mesh and texture, as shown in Figure 3. To prevent 
desynchronization, the VV controller preloads multiple mesh primitive data into memory 
ahead of the video frame. 

 

Figure 3 – Desynchronisation of texture and mesh resulting in flickering. 

ADAPTIVE SREAMING WITH VVGLTF 

We tested and applied VVglTF on different platforms including OpenXR, Unity, and WebXR. 
The latter for instance allows to run games and other interactive 3D content in any mobile 
or desktop browser. However, VV content creation can result in a tremendous amount of 
data (video and dynamic geometry). Long VV sequences could result in prohibitive 
download times. In order to solve this and even to support close-to-real-time transmission, 
we developed an adaptive streaming system for VVglTF as illustrated in Figure 4. The VV 
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is divided into chunks of data, each containing a certain number of frames (group-of-frames, 
GoF), corresponding to a certain duration. The shorter the GoF, the closer the system is to 
real-time transmission; however, the data overhead increases with decreasing GoF size. 
We evaluate this delay versus efficiency trade-off in our experiments below. 

The VVglTF streaming system includes a simple server with RESTful API, VV capture clients 
and VV player clients (Figure 4).  We support capture clients with different capturing setups, 
either high-end studios populated with dozens of cameras or mobile phones with mono 
camera. The capture client must generate 3D meshes of the capturing targets, convert the 
mesh textures to video, and assemble the data into VVglTF files on a GoF-by-GoF basis. 

 

Figure 4 – Architecture and data flow of our VVglTF streaming system. 

The capture client uploads VV textures as video (mp4) files to the server. The server 
generates the HTTP Live Streaming (HLS) m3u8 files for the VV. The VV player client 
downloads the list of VVglTF files using an HTTP get request. If the VV is separated into 
multiple GoFs, the volumetric capture client provides a VV configuration file (.glvv file 
extension) containing the list of all VVglTF file names in the sequence of VV. The volumetric 
capture client continuously uploads the GoFs and updates the glvv file to the server for live 
streaming. At the same time, the VV player client downloads the VVglTF files and 
corresponding texture videos, to decode them and to visualize the content. 

EVALUATION 

The GoF size is a crucial parameter in our design, as it introduces an inherent playback 
delay. Therefore, a smaller GoF size is desirable for delay-sensitive applications. On the 
other hand, it is more efficient regarding data size to pack more 3D meshes into a single 
GoF, as the relative overhead is reduced this way. In order to evaluate this trade-off, we 
conducted the following experiments. 

 

Figure 5 – VV examples from the vsenseVVDB2 dataset (19). 
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We selected 4 VV sequences (AxeGuy, LubnaFriends, Rafa2, Matis) from the 
vsenseVVDB2 database (19), each containing 300 VV frames at 30fps. Example views are 
shown in Figure 5. We encoded them into VVglTF files, first without any 3D mesh 
compression. We varied the GoF size as 300, 150, 60, 30, 25, 15, 5, 1, which corresponds 
to delays of 10s, 5s, 2s, 1s, 0.83s, 0.5s, 0.17s, and 0s, respectively. We then calculated the 
total file size that is needed to represent the corresponding VV sequences for each delay. 
The results are shown in Figure 6. We find that from a delay of 1s the data size practically 
saturates. Even at a delay of 0.5s the overhead is still very reasonable, a finding that is in 
line with common video coding standards and typical GoP sizes used there.  

 

Figure 6 – Total VVglTF file size (300 frames) vs. delay (based on GoF size), 
uncompressed. 

As a second step we encoded the meshes in the VVglTF files using the commonly used 3D 
mesh codec Draco, which is available as standard in glTF. For that we used typical settings 
of Draco (level 5) providing good visual quality (i.e. almost no coding artifacts visible). The 
results are shown in Figure 7 (please note different scaling of the x-axis). Again, we find that 
reasonable delays of 0.5s or less are possible without substantial increase of the data size. 
We further notice that the overall data rate is decreased by a factor of 10 compared to the 
uncompressed version. The additional data for the separate video files at good visual quality 
are: Rafa 44.6MB, AxeGuy 45MB, Lubna 48.8MB, Matis 49.9MB. This validates that VVglTF 
is well suited for efficient representation of VV. 
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Figure 7 – Total VVglTF file size (300 frames) vs. delay (based on GoF size), Draco 
compressed. 

CONCLUSIONS 

This paper presents VVglTF and serves as a groundwork for enabling VV in glTF, which is 
an important standard for 3D content, ensuring interoperability and efficiency across 
platforms and systems. We tested and applied it via OpenXR, Unity and WebXR. With 
VVglTF it is possible to bring VV for example into mobile and desktop browsers and to use 
it in corresponding 3D applications. For efficient streaming, we developed an adaptive 
approach, including standard video streaming components such as HLS. Our experiments 
validate that VVglTF is efficient regarding delay and compression. 

This evaluation does not consider limitations arising from terminal devices such as mobiles 
or head mounted displays, which may cause additional delays or performance problems. In 
our future work, we will consider such difficulties on low performance devices (in particular 
standalone XR headsets). We will further investigate live streaming for real-time holographic 
communication, and combination with other types of VV representations such as point 
clouds or Gaussian splatting. 
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