

THE OPEN-SOURCE TURING CODEC: TOWARDS FAST,

FLEXIBLE AND PARALLEL HEVC ENCODING

S. G. Blasi1, M. Naccari1, R. Weerakkody1, J. Funnell2 and M. Mrak1

1BBC, Research and Development Department, UK
2Parabola Research, UK

ABSTRACT
The Turing codec is an open-source software codec compliant with the
HEVC standard and specifically designed for speed, flexibility,
parallelisation and high coding efficiency. The Turing codec was designed
starting from a completely novel backbone to comply with the Main and
Main10 profiles of HEVC, and has many desirable features for practical
codecs such as very low memory consumption, advanced parallelisation
schemes and fast encoding algorithms. This paper presents a technical
description of the Turing codec as well as a comparison of its performance
with other similar encoders. The codec is capable of cutting the encoding
complexity by an average 87% with respect to the HEVC reference
implementation for an average coding penalty of 11% higher rates in
compression efficiency at the same peak-signal-noise-ratio level.

INTRODUCTION
The ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts
Group (MPEG) combined their expertise to form the Joint Collaborative Team on Video
Coding (JCT-VC), and finalised the first version of the H.265/High Efficiency Video Coding
(HEVC) standard (1) in January 2013. HEVC provides the same perceived video quality as
its predecessor H.264/Advanced Video Coding (AVC) at considerably lower bitrates (the
MPEG final verification tests report average bitrate reductions of up to 60% (2) when
coding Ultra High Definition, UHD, content). HEVC specifies larger block sizes for
prediction and transform, an additional in-loop filter, and new coding modes for intra- and
inter-prediction. This variety of options makes HEVC encoders potentially extremely
complex. Therefore, in order to achieve low complexity requirements and improved coding
efficiency, practical HEVC encoders should be carefully designed with tools to speed up
the encoding as well as architectures that allow parallel processing, reduced memory
consumption, and scale according to the available computational resources.
This paper introduces the Turing codec1, an open-source software HEVC encoder. The
design of the codec has been mainly driven by the distribution of UHD content in 8 and 10
bits per component, 4:2:0 format and up to 60 frames per second (fps). As such, particular
attention was devoted to design the codec architecture so that the memory footprint is
reduced, and many tools were developed specifically for the codec to reduce the
complexity of highly demanding encoding stages. This paper continues with an overview of

1 http://turingcodec.org

the related background associated with open source HEVC encoders. The focus will then
move to describe the main features, tools and architecture of the codec. After this
description an evaluation of the compression performance and complexity will be
performed and compared with other software HEVC open source codecs.

RELATED BACKGROUND
Many efforts are being spent towards the development of efficient HEVC software
encoders. During the definition of HEVC, JCT-VC developed an open-source reference
software encoder and decoder under the name of HEVC test Model (HM) (3). The HM
encoder includes almost all the tools considered in HEVC, with the objective of providing a
reference to be used during the development, implementation and testing of new coding
algorithms and methods. An HEVC encoder needs to select the optimal partitioning of a
Coding Tree Unit (CTU) in Coding Units (CUs), the best prediction mode for each CU, and
the optimal inter- or intra-prediction for each Prediction Unit (PU) (1). The HM reference
software performs most of these decisions by means of brute-force searches where many
options are tested, and the optimal configuration is selected in a Rate-Distortion (RD)
sense. As such, HM is optimised for efficiency, and requires too high computational
complexity to be considered in practical scenarios. Nonetheless, HM is mentioned in this
paper due to its completeness as an upper-bound benchmark in terms of efficiency.
In 2013, the x265 encoder project was launched with the goal of developing a fast and
efficient HEVC software encoder, reproducing the successful development model of the
x264 AVC encoder. The codec was developed using the HM software as a starting point,
where the code functionalities and structure were heavily improved to increase
performance and allow for various tools and enhancements. x265 includes many options
desirable for a practical encoder implementation, such as parallel encoding, speed
profiles, spatiotemporal prediction optimisations, etc. A complete description of the
encoder functionalities is out of the scope of this paper, but many details can be found on
the project official website (5).
A few other similar projects for HEVC open source software codecs are available, at
various stages of maturity. Kvazaar (6) is an academic project with the main goal of
providing a flexible modular structure to simplify the data flow modelling and processing,
while at the same time supporting some parallelisation and optimisation tools. At the time
of writing, Kvazaar supports Main and Main10 profiles and provides support for the
majority of HEVC tools. Finally, the libde265 project (7) is currently being developed
mainly as an HEVC decoder, distributed under the LGPL3 licence.

OVERVIEW OF THE TURING CODEC
The backbone of the Turing codec were developed following a parallel approach: on one
side, the code foundations have been developed making full use of state-of-the-art C++11
constructs and assembly optimisations; on the other side, advanced algorithms were
designed to improve demanding encoding processes. The final goal was that of providing
a fast HEVC software encoder suitable for a variety of applications. The codec is at an
advanced maturity stage, while it is also under active development to implement additional
functionalities and further improve the codec performance. Recently it has been made
available as open source. The codec was named after Alan Turing, one of the most
influential scientists in the development of the foundations of theoretical computer science.

Main Features

The Turing codec is compliant with the Main and Main10 profiles of HEVC (mainly defined
for content distribution). A partial list of the functionalities currently supported is as follows:

– Encoding of slice types I, P and B;
– Fixed Group of Picture (GOP) structures, with GOP length of 8 or 1;
– Configurable intra-refresh period;
– All CU sizes and PU types specified in HEVC;
– All 35 directions for intra-coding, with or without strong intra smoothing filtering;
– Inter-coding with uni- or bi-prediction from List 0 (L0) or List 1 (L1);
– Rate Distortion Optimised Quantisation (RDOQ);
– Deblocking filter;
– Rate control;
– Support for field (interlaced) coding;
– Shot change detection.

Alongside these functionalities the codec offers specific features designed to provide the
encoder with high coding efficiency and low computational complexity.

Encoding Process Optimisations and Speed Presets
The flexibility provided by HEVC with its large number of coding modes is responsible for
the high computational complexity associated with the standard. Encoders must select the
optimal configuration for each image area. Performing all decisions with an exhaustive RD
search is clearly not ideal. For this reason, during the development of the Turing codec,
great importance was given towards evaluating the impact of HEVC tools on compression
efficiency and complexity, with the goal of defining a set of requirements (in terms of
parameters and tools) to guide the development of the encoder. Many experiments were
performed for this purpose, as detailed in (8). In particular the HM reference software was
used (Version 12.0) to encode 16 UHD sequences (spatial resolution of 3840 × 2160 luma
samples), frame rate of 50 or 60 Hz, 4:2:0 format, 8 bits per component, according to the
Common Test Conditions (CTCs) (9) used by the JCT-VC under the Random Access Main
(RA-Main) configuration. Four Quantisation Parameters (QP) per sequence were selected
to uniformly span quality across the test-set. Compression efficiency and encoder
complexity were then measured. For compression efficiency, the Bjøntegaard Delta-rate
(BD-rate) was used (10), where negative BD-rate values correspond to compression
gains. For complexity, the encoding running time was used, where average time reduction
across all QPs for a sequence is considered as the Encoder Speedup (ES).
Table 1 presents a summary of the results of some of these experiments. Avoiding the use
of large CTU sizes leads to high BD-rate penalties, while limiting the Residual Quad-Tree

Table 1 - List of HEVC tools: coding efficiency and complexity
Tool BD-rate [%] ES [%]
CTU size 32 × 32 7.0 15.0
RQT depth 1 1.0 15.0
One reference frame 2.5 31.0
Sub-pel ME off 8.5 39.0
AMP off 0.5 5.0

(RQT) depth to 1 provides good ES for limited compression efficiency losses. Similarly,
limiting the encoder to considering one inter-prediction reference frame from each list
provides acceptable losses for consistent speedups. Limiting the Motion Vector (MV)
precision to integer precision resulted in high efficiency losses, whereas disabling AMPs
resulted in negligible effects. These experiments resulted in a set of requirements used
throughout the development of the Turing codec. For example a maximum RQT depth of 1
is considered, only one reference frame is used, and AMPs are never tested.
The experiments were also used as a basis in the development of the various fast
algorithms implemented in the codec. The Adaptive Partition Selection (APS) algorithm (8)
analyses the motion activity in a portion of the sequence to determine whether to test the
symmetric 2N × N and N × 2N modes (corresponding to splitting the CU into two
rectangular PUs in the horizontal and vertical direction, respectively). Motion activity is
computed based on the homogeneity of the residuals resulting from testing the 2N × 2N
mode: if residuals are highly homogeneous, testing of symmetric modes is avoided, hence
reducing complexity. The Multiple Early Termination (MET) algorithm stops integer-
precision ME by analysing the residuals in the surrounding of the motion search starting
points. In case an initial ME pattern search returns one of the multiple starting points as
optimal MV, no other MVs are tested, else the starting point is updated and conventional
ME is performed. The Reverse CU (RCU) algorithm reduces the set of depths to test on a
CTU by either avoiding testing CUs at minimum or maximum depths. The depth selected
in neighbouring blocks is used at this purpose to predict the maximum depth likely to be
used in the current CTU and consequently to limit the range of depths to test on the CTU.
Finally, the Fast Decision for All Modes (FDAM) algorithm analyses the residuals found
after quantisation when testing each inter-prediction mode. If all residuals are zero, then
transform and quantisation are avoided while testing all subsequent inter-prediction
modes, which means the prediction block is used as final reconstruction.
Currently, the Turing codec supports three speed presets: slow, medium and fast. The
presets control the pre-defined values of options and tools and enable/disable the above
algorithms, to provide flexibility between computational complexity and encoder efficiency.
A detailed list of the effects of the three speed presets is presented in Table 2.

Memory Usage, Parallel Processing Optimisations and Programming Optimisations
The Turing codec benefits from several performance optimisations that leverage parallel
CPU features, reduce memory usage bandwidth and complexity, and minimise branch
instructions in critical parts. The codec uses a thread pool with a controlled maximum
number of active threads. By ensuring there are never more active threads than logical
CPU cores, the likelihood of pre-emption and associated cost of context switch is greatly
reduced. The thread pool is task-based with every encoding activity: RD searches,
reconstruction, in-loop filtering, bitstream manipulation, etc. Tasks are nodes in an implicit
directed dependency graph, and an efficient paradigm was designed to manage this in a
generic fashion, extensible beyond a single CPU and proven to operate well when
distributed between asynchronous nodes collaborating to encode a single sequence.
Current practical software codecs make use of SIMD instructions via assembly code or
intrinsics in C/C++ functions. The Turing codec is no exception but uses a Just-In-Time
(JIT) assembler to assemble optimised functions at runtime. This approach has two main

Table 2 - Turing codec speed presets

Tool (options) Speed preset
Slow Medium Fast

AMPs disabled disabled disabled
2N × N, N × 2N enabled enabled disabled
RDOQ enabled enabled disabled
RQT enabled disabled disabled
APS disabled enabled enabled
MET disable enable enable
RCU disabled enabled enabled
Sub-pel ME all all only half-pel
Search range for ME 64 64 32
Search range for bi-prediction 5 5 1
Number of merge candidates 5 5 2
Number of intra modes to test with RD search 8 4 4
Sign Data Hiding enable enable disable
Deblocking filter enable enable enable
Minimum CU size 8 8 8
CTU size 64 64 64

benefits. First, it allows developers to use C++ templates, loops, conditions and function
calls instead of ad-hoc assembler macros. Second, JIT assembly allows run-time
parameters such as bit depth and raster stride to be embedded into the machine code,
reducing the need for additional parameters and stack manipulation.
Moreover, the Turing codec introduces a novel approach to the management of temporary
data in the form of the snake data structure. Video codecs have to make a large number of
RD decisions, and in doing so intermediate variables are generated, discarded, recreated
or copied for each alternative. The snake memory is a one-dimensional memory capable
of representing two-dimensional data. It is employed in several modules where
neighbouring sample data, modes or coefficients are required. While conventional codecs
require metadata memory size of order width × height, the snake has a characteristic size
of only width + height. This results in faster fill operations, better cache utilisation and
lower memory bandwidth. Finally, every decision selected by the codec (modes, flags,
MVs and coefficients) is stored in a serial format which can be easily cut, copied and
pasted in memory, and is very convenient for fast output of the bitstream.

EVALUATION OF THE TURING CODEC
Different experiments were performed to assess the performance of the Turing codec
under a variety of conditions. The results reported in this section refer to the codec run in
single-thread mode, as this allows the algorithmic complexity associated with the codec
workflow to be fully appreciated. First, the codec was evaluated with respect to its coding
efficiency and computational complexity. Tests were performed using Main and Main10
profiles. In the former case, the same test set and conditions in Table 1 were used: sixteen
UHD sequences were tested with four QP values. In these experiments, BD-rates and ES
are reported as performance indicators, computed with respect to an anchor consisting of
an HM encoder used to encode the same content under the JCT-VC CTCs (9).
Results of the experiments associated with the Main profile are shown in Table 3. The
codec was tested with the three available speed presets and compared with an x265
encoder (Version 1.9). Three presets were used with x265, namely placebo, medium and
fast. As can be seen, the Turing and x265 codecs are differently optimised.

Table 3 – Results of the Turing codec and x265 against HM under the Main profile

 Turing x265
 Slow Medium Fast Placebo Medium Fast

BD-R

[%]
ES
[%]

BD-R
[%]

ES
[%]

BD-R
[%]

ES
[%]

BD-R
[%]

ES
[%]

BD-R
[%]

ES
[%]

BD-R
[%]

ES
[%]

ParkAndBuildings 13.2 36.9 19.8 88.5 35.3 95.9 16.2 71.9 20.6 86.0 44.8 98.7
NingyoPompoms 0.2 42.3 3.8 84.4 17.8 94.0 8.0 52.1 9.5 82.5 40.3 98.8
ShowDrummer1 10.2 35.1 14.4 86.0 36.0 95.3 11.8 63.6 15.2 85.5 60.3 98.8
Sedof 6.3 32.3 21.5 86.1 46.3 95.5 14.8 65.0 18.0 82.5 53.9 98.7
Petitbato 3.0 33.1 11.8 86.2 25.1 95.6 1.1 68.1 3.0 84.9 31.7 98.7
Manege 8.6 30.3 24.5 84.5 39.5 94.9 16.2 62.7 20.1 82.4 53.3 98.7
ParkDancers 3.9 32.7 5.2 88.0 17.7 95.8 11.5 77.0 12.8 89.2 34.4 98.9
CandleSmoke 5.3 37.4 9.2 89.0 24.6 96.0 16.9 74.4 19.6 88.2 46.2 98.9
TableCar 4.7 27.5 8.2 87.8 21.6 96.2 8.7 81.0 10.3 89.9 30.7 99.1
TapeBlackRed 4.8 37.1 9.6 89.2 18.6 95.6 9.0 73.9 12.9 88.7 54.0 98.9
Hurdles 6.5 34.7 16.8 88.3 40.2 95.9 12.0 72.9 16.6 86.7 59.8 98.8
LongJump -0.7 37.0 8.4 86.6 28.6 95.5 2.9 64.1 16.2 83.8 61.8 98.7
Discus -8.1 42.7 -3.6 87.8 14.5 95.7 -3.3 67.0 18.6 83.9 48.3 98.8
Somersault 5.2 37.0 11.6 89.6 25.6 96.3 11.8 78.3 18.3 89.3 72.5 99.0
Boxing 3.7 41.4 9.9 87.0 24.1 95.5 7.5 65.2 12.1 86.1 45.4 98.8
Netball 5.1 37.7 11.5 86.4 25.2 95.4 12.2 67.5 15.2 85.9 48.5 98.8
Average 4.5 35.96 11.4 87.22 27.5 95.57 9.8 69.05 14.9 85.97 49.1 98.83

The performance of the Turing codec is generally weighted towards achieving higher
compression efficiency, whereas x265 tends to be more optimised towards lower
computational complexity. When using the slow preset, the Turing codec is very close to
the performance of HM (4.5% BD-rate losses), with an ES of 35.96%. Conversely, x265
with the placebo preset (i.e. when the codec can achieve the highest compression
efficiency) results in higher 9.8% BD-rate loss, for 69.05% ES. The medium preset of both
codecs can be taken as a fair term of comparison, as both codecs seem to target a similar
trade-off between complexity and efficiency when using this preset. In this case, the Turing
codec outperforms x265 both in terms of speed and coding efficiency, resulting in 11.4%
BD-rate loss for 87.22% ES. Conversely, x265 results in a higher loss (14.9% BD-rate) for
lower ES (85.97%). Finally, when using the fast preset, the performance of x265 degrades
to 49.1% BD-rate loss, for very high speedups of 98.83%. The Turing codec instead
favours quality, returning lower efficiency loss (27.5% BD-rates), for lower ES of 95.57%.
When testing the codecs under the Main10 profile, similar results are obtained as shown in
Table 4. For this experiment, six high dynamic range sequences from the test material
described in (12) were used. The sequences are in HD resolution (1920 × 1080 luma
samples) with frame rates from 24 to 50 Hz, 4:2:0 format, 10 bits per component and
compressed with the Hybrid Lo-Gamma (HLG) opto-electronic transfer function (13). The
current version of the Turing codec only supports the medium and fast presets for the
Main10 profile, which were both used for these tests. Again, results are weighted towards
maintaining high compression efficiency. When using the medium preset 17.5% BD-rate
loss is obtained for 73.67% ES compared to the HM reference encoder. Limited losses of
33.4% are obtained when using the fast preset, for 88.01% ES. Conversely, x265 already
results in higher losses with the placebo preset (20.8% on average) for 76.73% ES, and up
to 50.5% BD-rate loss with the fast preset for 98.61% ES.
The three encoders (HM, x265 and the Turing codec) were also compared in terms of the
memory consumption utilised during the encoding in single thread mode. Accordingly, the
first 25 frames of the TapeBlackRed UHD sequence were encoded with QP equal to 26.

Table 4 - Results of the Turing codec and x265 against HM under the Main10 profile

 Turing x265
 Medium Fast Placebo Medium Fast

BD-R

[%]
ES
[%]

BD-R
[%]

ES
[%]

BD-R
[%]

ES
[%]

BD-R
[%]

ES
[%]

BD-R
[%]

ES
[%]

BalloonFestival 23.9 72.6 44.3 88.7 13.0 77.7 39.0 98.2 47.0 98.6
FireEater2 16.0 70.0 24.7 86.4 31.0 75.1 65.1 98.3 73.5 98.8
GarageExit 16.8 69.5 34.9 85.9 19.0 65.2 35.8 98.0 50.0 98.5
MagicHourCut1 12.7 74.1 20.5 87.6 22.9 79.6 39.2 98.1 45.1 98.6
Market3 20.3 77.2 40.6 89.9 16.2 77.1 34.8 98.2 39.0 98.7
Sunrise 15.3 78.7 35.4 89.7 22.9 85.7 42.2 98.1 48.6 98.5
Average 17.5 73.67 33.4 88.01 20.8 76.73 42.7 98.16 50.5 98.61

A Linux machine using an Intel Xeon CPU E5-2680 at 2.50GHz was used for this
experiment. The memory usage was sampled during the encoding at fixed intervals of one
second, where the slow preset was used for the Turing codec, the placebo preset was
used for x265, and the JCT-VC CTCs were used for HM. Results are shown in Figure 1.
As can be seen, the Turing codec requires a fraction of the memory needed by the other
two encoders. The maximum amounts of memory recorded were 247 MBytes for the
Turing codec, 1260 for x265 and 2557 for HM. The jump shown for the HM encoder after
the first GOP of 8 frames is due to the codec buffering at that stage all 8 frames in the
second GOP, while also maintaining frames in the first GOP as reference frames. This
does not happen in subsequent GOPs because the buffer is freed of unnecessary frames
at time instants distant in the past. x265 and the Turing codec are more efficient in
reducing memory requirements by only keeping necessary information in the buffers.
Finally, the codec was also used to encode five sequences in HD format representative of
broadcasting applications. The compressed content was visually inspected by expert
viewers and compared with the output of a practical AVC encoder at bitrates in line with
the statistical multiplex averages. Side-by-side comparisons were performed at the viewing
distance of three times the display height in standard viewing conditions. At the same
perceived quality, the rate savings of the Turing codec were in the range of 15-40%.

CONCLUSIONS
This paper presented an overview of the Turing codec, focusing on a technical description
of the main features. Algorithmic optimisations as well as programming performance

0

500

1000

1500

2000

2500

3000

M
em

or
y

co
ns

um
pt

io
n

(M
By

te
s)

Frame

HM x265 Turing codec

0 5 10 15 20 25
Figure 1 - Comparison of memory consumption of Turing codec, x265 and HM

optimisations are included in the codec, as detailed in the paper. A comprehensive
performance assessment shows that the Turing codec achieves consistent results across
a variety of content, providing high coding efficiency for relatively low complexity
requirements. The codec is also capable of drastically lowering memory requirements with
respect to similar projects, and it results in comparable subjective qualities for lower
bitrates than those typically required by practical codecs used in the broadcasting chain.

ACKNOWLEDGEMENTS
The authors would like to thank InnovateUK for co-funding this work as part of the THIRA
project. Part of this work has been conducted within the project COGNITUS, which has
received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 687605.

REFERENCES
1. Sullivan G. J., Ohm J.-R., Han W.-J. and Wiegand T., 2012. Overview of the High

Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and
Systems for Video Technology. Vol. 22, pp. 1649 to 1668.

2. Tan T. K., Weerakkody R., Mrak M., Ramzan N., Baroncini V., Ohm J.-R. and Sullivan
G. J., 2016. Video quality evaluation methodology and verification testing of HEVC
compression performance. IEEE Transactions on Circuits and Systems for Video
Technology. Vol. 26, pp. 76 to 90.

3. JCT-VC. HM Reference Software. Available: http://hevc.hhi.fraunhofer.de/HM-doc/.
4. Weerakkody R. and Mrak M., 2013. High Efficiency Video Coding for Ultra High

Definition Television. Proceedings of NEM Summit, October 2013.
5. x265 Project Homepage. Available: http://x265.org/.
6. Kvazaar Project Homepage. Available: http://ultravideo.cs.tut.fi/#encoder.
7. Libde265 Project Homepage. Available: http://www.libde265.org/.
8. Naccari M., Gabriellini A., Mrak M., Blasi S. G., Zupancic I. and Izquierdo E., 2015.

HEVC Coding Optimisation for Ultra High Definition Television Services. In Picture
Coding Symposium, May 2015, pp. 1 to 5.

9. Bossen F., 2013. Common HM Test Conditions and Software Reference
Configurations. JCTVC-L1100, 12th meeting, Geneva, January 2013.

10. Bjøntegaard G., 2001. Calculation of Average PSNR Differences Between RD-curves.
VCEG-M33, 13th meeting, Austin, TX, April 2001.

11. Rosewarne C., Bross B., Naccari M., Sharman K. and Sullivan G. J., 2016. High
Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Update 5 of Encoder
Description. JCTVC-W1002, 23rd meeting, San Diego, February 2016.

12. François E., Yin P. and Sole J., 2015. Common Test Conditions for HDR/WCG Video
Coding Experiments. MPEG- N15793, 113th meeting, Geneva, October 2015.

13. Borer T. and Cotton A., 2015. A “Display Independent” High Dynamic Range
Television System. Proceedings of the International Broadcasting Convention,
September 2015.

